AMINES

1. Acetonitrile on reduction gives

- a) Propanamine
- b) Methanamine
- c) Ethanamine

d) None of these

2. Hofmann's rearrangement during the conversion of an amide to amine involves...... rearrangemet.

- a) Intermolecular
- b) Intramolecular.
- c) Both (a) and (b)

d) None of these

3. The reduction of which of the following compound would yield secondary amine?

a) Alkyl nitrile

b) Carbylamine

c) Primary amine

d) Secondary nitro compound

4. Which of the test is used for detection of secondary amines?

a) Liebermann's nitroso test

b) Lucas test

c) Tollen's test

d) Carbylamine reaction

5. From the following compounds which does not react with C₆H₅SO₂CI?

a) C_2H_5 . NH_2

b) CH₃. NH₂

c) (CH₃)₂NH

d) $(C_2H_5)_3N$

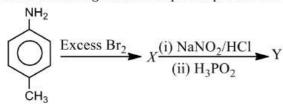
6. Which of the following statements is not correct?

- a) Alkyl isocyasnides have bad odours while alkyl cyanides have pleasant odours
- b) Alkyl cyanides are not as poisonous as KCN
- c) Alkyl cyanides have lower boiling points than the corresponding alkyl isocyanides
- d) Acetonitrile is soluble in water but methylcarbylamine is not

7. Which of the following reaction will not occur?

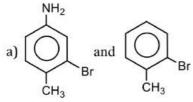
a)
$$\phi N_2^+ + CuBr \xrightarrow{HBr} \phi - Br$$

b)
$$\phi N_2 + \phi OH \rightarrow \phi - N = N - \langle O \rangle - OH$$


c)
$$\phi N_2^+ \xrightarrow{H_3PO_2} \phi H$$

d)
$$\phi N_2^+ + I^- \rightarrow \phi - I$$

8. Which of the following is not characteristic of amines?


- a) They smell like ammonia
- b) They are inflammable in air
- c) They show the property of hydrogen bonding
- d) They are amphoteric in nature

9. In the following reaction sequence predict the compound *X* and *Y*.

The compound X and Y are

c)
$$Br$$
 Br
 Br
 Br
 Br
 Br
 Br

- NH_2 and
- NH₂ and
- 10. The type of isomerism shown by C₆H₅CN and C₆H₅NC is:
 - a) Position
- b) Functional
- c) Enantiomerism
- d) Tautomerism

11. Identify A and B in the reaction given below.

Ethane nitrile
$$\xrightarrow[+2H_2O]{Hydrolysis} A \xrightarrow[-NH_3]{Decarboxylation} A \xrightarrow[-CO_2]{Sodalime} A \xrightarrow[-CO_2]{CO_2}$$

a) Acetic acid, methanol

b) Acetone, methane

c) Ethanoic acid, ethane

- d) Ethanoic acid, methane
- 12. When ethanol is mixed with ammonia and passed over catalyst, the compound formed is:
 - a) C₂H₅NH₂
- b) C2H4
- c) C₂H₅OC₂H₅
- d) CH₃OCH₃

- 13. Which of the following is strongest base?
 - a) C₆H₅NH₂
- b) $p NO_2 C_6H_4NH_2$ c) $m NO_2 C_6H_4NH_2$ d) $C_6H_5CH_2CH_2$

14. In the reaction

$$R - C \equiv N + 4(H) \xrightarrow{X} RCH_2NH_2$$

X can be

- a) LiAIH4
- b) H2SO4
- c) Ni

- Increasing order of basicity of CH₃CH₂CH₂NH₂ H₂C = CHCH₂NH₂ and HC ≡ CCH₂NH₂ is
 - $CH_3CH_2CH_2NH_2 < HC \equiv CCH_2NH_2 < H_2C =$ a) CHGH NW
 - CHCH2NH2
 - HC \equiv CCH₂NH₂ < H₂C = CHCH₂NH₂ $< CH_3CH_2CH_2NH_2$
- $_{\mathrm{b})}$ CH₃CH₂CH₂NH₂ < H₂C = CHCH₂NH₂ < CH
 - $\equiv CCH_2NH_2$
- $_{\text{dl}}$ CH \equiv CCH₂NH₂ < CH₃CH₂CH₂NH₂ < H₂C = CHCH₂NH₂

16. In the compound given below,

$$\begin{array}{c} H_3 \overset{+}{N} \\ (\varUpsilon) \end{array} \begin{array}{c} \overset{+}{N} H_3 \\ (Z) \end{array}$$

the correct order of acidic nature of the positions (X), (Y) and (Z) is:

- a) Z > X > Y
- b) X > Y > Z
- c) X > Z > Y
- d) Y > X > Z

- 17. Which of the following is carbamide?
 - a) CH₃CONH₂
- b) NH2CONH2
- c) CH₂(NH₂)CONH₂
- d) CO(OH)NH2
- 18. Aniline is not the major product in one of the following reactions. Identify that reaction.
 - a) $C_6H_5OH + NH_3 \xrightarrow[300°C]{ZnCI_2}$
 - C) $C_6H_5Ci + NH_3 \xrightarrow{200^{\circ}C} High pressure$
- b) $C_6H_5NO_2 + Zn$ powder
- d) $C_6H_5NO_2 + 6(H) \xrightarrow{\text{Fe+H}_2O}$

- 19. An organic compound 'A' having molecular formula C₂H₃N on reduction gave another compound B, upon treatment with nitrous acid 'B' gave ethyl alcohol. On warming with chloroform and alcoholic KOH, it formed an offensive smelling compound 'C'. The compound 'C' is
 - a) CH₃CH₂NH₂
- b) CH₃CH₂N C C
- c) $CH_3C \equiv N$
- d) CH₃CH₂. OH

20. The IUPAC name of the compound having formula,

$$O = C - CH - CH_2$$
 is:
 $\begin{vmatrix} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$

- a) 3-aminohydroxy propionic acid
- b) 2-amino-propan-3-oic acid
- c) Amino hydroxy propanoic acid
- d) 2-amino-3-hydroxy propanoic acid
- 21. Methyl amine reacts with methyl iodide. For completion of reaction, how many moles of methyl iodide are required?
 - a) 1

b) 2

c) 3

d) 4

22. The IUPAC name of CH₃-CH-CH₂-CH-CH₃ is:

- a) 2-cyano-3-methyl hexane
- b) 2-dimethyl-4-cyanopentane
- c) 2,4-dimethyl pentane nitrile
- d) 2-cyano-3-methyl hexane
- 23. Identify X in the series,

 $\xrightarrow{\text{HNO}_3}$ Intermediate $\xrightarrow{\text{H}_2\text{O}} X$:

NH2

NHCOCH₃

24. $C_2H_5NH_2 \xrightarrow{HNO_2} A \xrightarrow{PCI_3} B \xrightarrow{NH_3} C$.

Recognize the compound C from the following

	a) Propanenitrile	b) Methylamine	c) Ethylamine	d) Acetamide					
25.	Dichlorocarbene does no	t form as an intermediate i	n this reaction						
	a) $phenol + CHCl_3 + 4KC$	ЭН	b) Ethyl amine +CHCl ₃ +	КОН					
	c) Phenol+CCl ₄ + 4KOH		d) CHCl ₃ + KOH						
26.		ethods neither means for t	the synthesis nor for separation of amines?						
		b) Hofmann's method	(S)	d) Curtius method					
27	Reaction of aniline with h		c) wartz reaction	a) cardas medioa					
27.			a) Condensation	d) Dolumoniaction					
20	a) Substitution	b) Addition	c) Condensation	d) Polymerisation					
28.		with chloroform and ethan	reconstitution of the contract						
	a) Benzyl alcohol	b) Benzaldehyde	.,	d) Benzyl isocyanide					
29.		on reduction with <i>LiAIH</i> ₄ y	5						
	a) Ethanamide		b) N-methylethanamide						
	c) N, N-dimethylethanan		d) Phenylmethanamide						
30.	Hofmann bromamide rea	action is used to prepare							
	a) 1° amine	b) 2° amine	c) 3° amine	d) All of these					
31.	ÇN								
	$\frac{\text{CH}_3\text{MgBr}}{\text{dry ether}} X \xrightarrow{\text{H}_2}$	<u>2</u> O <i>Y</i>							
	Identify Y								
	a) Benzophenone	b) Acetophenone	c) Benzoic acid	d) phenol					
32.		ompound does not undergo	The state of the s	DATE OF THE PROPERTY OF THE PARTY OF THE PAR					
	a) Phenol		c) Secondary amine						
33.		1977) in increasing order of basic					
	nature in aqueous mediu		32 ()/ (3/3 (,					
	하는데 이렇게 있는데 안 되었다. 이 사람들은 이 경우를 하는데	b) III < IV < I < II	c) $I < II < III < IV$	d) $II < III < I < IV$					
34	The reaction,	7,111 7.11 7.1 3.11	.,	., ., ., ., .,					
J 1.									
	$RCOOH \xrightarrow{NaN_3/conc.H_2SO_4} R$	$NH_2 + N_2 + CO_2$							
	is known as								
	a) Curtius reaction	b) Lossen reaction	c) Schmidt reaction	d) Hofmann reaction					
35.	Which of the following co	ompounds on treatment firs	st with NaNO ₂ /HCI and the	n coupled with phenol					
	produces p-hydroxyazob	enzene?							
	a) Nitrobenzene	b) Azobenzene	c) Phenol	d) Aniline					
36.	A compound which on re	action with aqueous nitrou	s acid gives an oily nitroso	amine is:					
	a) Methylamine	b) Ethylamine	c) Diethylamine	d) Triethylamine					
37.	:	ride on reaction with pheno	ol in weakly basic medium						
	a) Diphenyl ether	b) <i>p</i> -hydroxy azobenzene	and the control of th	d) Benzene					
38.		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	n de 🕽 e em anti sum municipal de anticipal de e	Sample Consider the Same Constitute of					
0.000	F-NO ₂ (CH	$A \longrightarrow A$							
	a) H ₂ N—N	∠CH ₃ `CH ₃	b) O ₂ N-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	CH ₃					
	c) H ₂ N NH ₂		d) _{O2} N—NH ₂						

39. 1 mole of ethyl amine on reaction with $\ensuremath{\mathsf{HNO}}_2$ gives at NTP

	a) 11.2 L of N ₂		c) 22.4 L of N ₂	d) 1 L of N ₂					
40.	Dehydration of an amide		0.0	1920 Add 1930					
5%	a) Cyanide	b) Amine	c) Isocyanide	d) Fatty acid					
41.		basic strength of amines de							
	a) $CH_3NH_2 > (CH_3)_2NH_2$		b) $(CH_3)_2NH > (CH_3)_3N$	5 5					
	c) $(CH_3)_3N > (CH_3)_2NH$		d) $(CH_3)_2NH_2 > CH_3NH_2$	$> (CH_3)_3N$					
42.	Methyl cyanide gives on h	9700		15 17 1 1					
40	a) Methyl amine	b) Acetic acid	c) Formic acid	d) Ethyl amine					
43.	Alkyl nitrite on reduction	- 1,5,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	-) D-4b (-) d (b)	1) 1 1					
4.4	a) Alcohol	b) Hydroxylamine	c) Both (a) and (b)	d) hydrazine					
44.	The molecular formula C ₃	N N	al 2ºamina	d) Quatamany calt					
45	a) 1°amine	b) 2°amine	c) 3°amine	d) Quaternary salt					
45.	2,4,6-tribromo aniline is a								
	a) Electrophilic addition ofb) Electrophilic substitution								
	c) Nucleophilic addition of								
	d) Nucleophilic substituti								
46	The value of K_b is highest								
10.		b) p-chloroaniline	c) p-nitroaniline	d) p-methylaniline					
47.	DHM : 10 10 10 10 10 10 10 10 10 10 10 10 10	[[[[[[[[[[[[[[[[[[[c) p incroamme	a) p methylamine					
	$(CH_3)_3 N \xrightarrow{(i)BrCN} [X], here$	e [X] is							
	a) CH ₃ NH ₂	b) (CH ₃) ₂ NH	c) (CH ₃) ₃ NO	d) $(CH_3)_2NNO$					
48.	The decreasing order of b	oasic characters of the three	amines and ammonia is						
	a) $NH_3 > CH_3NH_2 > C_2H_3$	$I_5NH_2 > C_6H_5NH_2$	b) $C_2H_5NH_2 > CH_3NH_2 >$	$NH_3 > C_6H_5NH_2$					
	c) $C_6H_5NH_2 > C_2H_5NH_2$	$> CH_3NH_2 > NH_3$	d) $CH_3NH_2 > C_2H_5NH_2 > C_6H_5NH_2 > NH_3$						
49.	Which compound will libe	erate CO_2 from $NaHCO_3$ sol	ution?						
	a) CH ₃ CONH ₂	b) CH ₃ NH ₂	c) $(CH_3)_4N^+OH^-$	d) $CH_3N^+H_3CL^-$					
50.	Acetaldoxime reacts with	~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~							
	a) CH ₃ CN	b) C ₂ H ₅ CNO	c) C ₂ H ₅ CN	d) All of these					
51.		r distinguishing primary, se							
	a) Alcohols		b) Amines						
=0	c) Alkyl halides		d) Hydrogens in hydrocar	bons					
52.		ongly acidic medium, result	in the formation of						
	<i>m</i> -nitroaniline also. This		a aulastitutian naastian						
	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	rienting during electrophili							
		ys to the <i>meta</i> position irre nucleophilic substitution r							
		litions aniline is present as	~ -	iculum.					
53	75	with chloroform and ethan		is					
00.	a) Benzyl alcohol	b) Benzaldehyde	c) Benzonitrile	d) Benzyl isocyanide					
54.		und reacts with aqueous ni		posenie o proportiona politica posta posta posta proportional del film					
	nitroso amine. The compo		52 (19) (19) (19) (19) (19) (19) (19) (19)	•					
	a) CH ₃ NH ₂		b) CH ₃ CH ₂ NH ₂						
	c) (CH ₃ CH ₂) ₃ N		d) CH ₃ CH ₂ - NHCH ₂ CH ₃						
55.	Nitrosoamines ($R_2N - N$	= 0) are soluable in water.	On heating them with cond	: H ₂ SO ₄ , they give					
	secondary amines. The re	eaction is called							
	a) Perkin's reaction		b) Fries reaction						
	c) Liebermann nitroso re		d) Etard reaction						
56.		ng functional groups underg							
	a) -CN	b) -CHO	c) -COCH ₃	d) -Br					

- 57. The correct set of the products obtained in the following reactions is
 - $(A)RCN \xrightarrow{Reduction}$
- (B) $RCN \xrightarrow{(I)CH_3MgBr}$
- (C)RNC $\xrightarrow{\text{Hydrolysis}}$
- $(D)RNH_2 \xrightarrow{HNO_2}$

-	,	(-	(-)2							
	A	В	С	D						
a)	2°amine	Methyl ketone	1°amine	Alcohol						
c)	2°amine	Methyl ketone	2°amine	Acid						

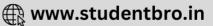
- b) 1°amine | Methyl ketone | 1°amine | Alcohol | d) 2°amine | Methyl ketone | 2°amine | aldehyde
- 58. Which of the following is not a nitroderivative?
 - a) C₆H₅NO₂
- b) CH₃CH₂ONO
- c) CH₃ CH-N O
- d) C₆H₄(OH)NO₂

- 59. $CHCI_3 + C_6H_5NH_2 + 3NaOH \rightarrow A + 3B + 3C$ In the above reaction, the product 'A' is
 - a) Chlorobenzene
- b) Phenyl isocyanide
- c) Phenyl cyanide
- d) Phenyl chloride

- 60. Carbonyl chloride reacts with ammonia to form:
 - a) CO₂

- b) NH₂CONH₂
- c) CH₃COONH₄
- d) CH3CONH2

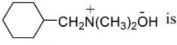
- 61. Which of the following statements are correct?
 - a) Aniline is a stronger base ethyl amine
 - b) Aniline is a stronger base than p-methoxyaniline
 - c) Aniline must be acetylated before nitration with an acid mixture
 - d) Aniline is soluble in an ammonium hydroxide solution
- 62. The major product of the following reaction is


a)
$$N - H_2C - B$$

$$d) \bigcirc O \\ -CH_2CI$$

- 63. Diazotisation can be carried out by the action of NaNO2 and dilute HCl at ice cold temperature on:
 - a) Aromatic secondary amine
 - b) Aromatic primary amine
 - c) Aromatic nitro compound
 - d) Aromatic amine
- 64. The molecular formula of benzonitrile is
 - a) CcHcCN
- b) C₆H₅NC
- c) C₆H₅CNO
- d) C₆H₅NCO
- 65. Which of the following reactions is given by only primary amines?
 - a) Reaction with HONO

b) Reaction with chloroform and alcoholic KOH



	c) Reaction with acetyl ch	nloride	d) Reaction with Grignard reagent							
66.	The diamide of carbonic a	acid is:								
	a) Acetamide	b) Formamide	c) Benzamide	d) Urea						
67.	Urea reacts with hydrazin	ne to form:								
	a) Nitrogen	b) Phenyl hydrazine	c) Semicarbazide	d) Urethane						
68.	Final product of hydrolys	ed alkyl cyanide is								
			R - C = NH	•						
	a) RCOOH	b) RCONH ₂	c)	d) R — $C \equiv NH$						
			ОН							
69.	Secondary nitroalkanes c	an be converted into keton	es by using <i>Y</i> . Identify <i>Y</i> fro	m the following						
	R	R		_						
	R CHNO ₂ + Y \longrightarrow	► >c==o								
	R	R								
	a) Aqueous HCl	b) Aqueous NaOH	c) KMnO ₄	d) CO						
70.	Among the following com	pounds, the most basic is								
	a) Aniline	b) Acetanilide	c) p-nitroaniline	d) Benzyl amine						
71.	Substitution of one alkyl	group by replacing hydroge	en of primary amines:							
	a) Increases the base stre	ength								
	b) Decreases the base str	ength								
	c) Remains the same									
	d) None of the above									
72.	Ethylamine undergoes ox	idation in the presence of H	$KMnO_4$ followed by hydroly	sis to form:						
	a) An acid	b) An alcohol	c) An aldehyde	d) a N-oxide						
73.		mpounds will undergo carl								
	a) $(CH_3CH_2)_2NH$	b) (CH ₃) ₂ NH	c) C ₆ H ₅ NH ₂	d) $(CH_3)_3N$						
74.		forms non-superimposable	mirror images but it does	not show optical activity						
	because:									
	a) Of rapid flipping									
	b) Amines are basic in nature									
	c) Nitrogen has a lone pa	ir of electron								
	c) Nitrogen has a lone pa d) Of absences of asymme	ir of electron etric nitrogen								
75.	c) Nitrogen has a lone pa d) Of absences of asymmo Urea on heating with etha	ir of electron etric nitrogen anol gives:		D.V. 6.1						
	c) Nitrogen has a lone pa d) Of absences of asymmo Urea on heating with etha a) Urethane	ir of electron etric nitrogen anol gives: b) Urea alcohol	c) Ureides	d) None of these						
	c) Nitrogen has a lone pa d) Of absences of asymmo Urea on heating with etha a) Urethane Aliphatic amines are solu	ir of electron etric nitrogen anol gives: b) Urea alcohol	c) Ureides	d) None of these						
	c) Nitrogen has a lone pa d) Of absences of asymme Urea on heating with etha a) Urethane Aliphatic amines are solu a) They are basic	ir of electron etric nitrogen anol gives: b) Urea alcohol ble in water because:	c) Ureides	d) None of these						
	c) Nitrogen has a lone pard) Of absences of asymmetric Urea on heating with ethat a) Urethane Aliphatic amines are soluted a) They are basic b) They are amino compositions.	ir of electron etric nitrogen anol gives: b) Urea alcohol ble in water because:	c) Ureides	d) None of these						
	c) Nitrogen has a lone pard) Of absences of asymmetric Urea on heating with ethata) Urethane Aliphatic amines are soluta) They are basic b) They are amino composition of the compositio	ir of electron etric nitrogen anol gives: b) Urea alcohol ble in water because: ounds vater	c) Ureides	d) None of these						
76.	c) Nitrogen has a lone pard) Of absences of asymmetric Urea on heating with ethat a) Urethane Aliphatic amines are soluted) They are basic b) They are amino composite to the part of the	ir of electron etric nitrogen anol gives: b) Urea alcohol ble in water because: ounds vater gen bonds with water	c) Ureides	d) None of these						
76.	c) Nitrogen has a lone pard) Of absences of asymmetric Urea on heating with ethat a) Urethane Aliphatic amines are soluted a) They are basic b) They are amino composed. They are lighter than well of formation of hydrogen A positive carbylamines to	ir of electron etric nitrogen anol gives: b) Urea alcohol ble in water because: ounds vater gen bonds with water		d) None of these						
76.	c) Nitrogen has a lone pard) Of absences of asymmetric Urea on heating with ethata) Urethane Aliphatic amines are soluta) They are basic b) They are amino composition of hydrogan A positive carbylamines to a) N, N-dimethylaniline	ir of electron etric nitrogen anol gives: b) Urea alcohol ble in water because: ounds vater gen bonds with water est is given by	b) 2,4-dimethylaniline	d) None of these						
76. 77.	c) Nitrogen has a lone pard) Of absences of asymmetric Urea on heating with ethat a) Urethane Aliphatic amines are soluted. They are basic b) They are amino composed. They are lighter than well of formation of hydrogen A positive carbylamines to a) N, N-dimethylaniline c) N-methy-o-methylani.	ir of electron etric nitrogen anol gives: b) Urea alcohol ble in water because: ounds vater gen bonds with water est is given by	b) 2,4-dimethylaniline d) N-methylbenzylamine							
76. 77.	c) Nitrogen has a lone pard) Of absences of asymmodurea on heating with ethata) Urethane Aliphatic amines are soluta) They are basic b) They are amino compoded They are lighter than well of formation of hydrogan A positive carbylamines to a) N, N-dimethylaniline c) N-methy-o-methylaniline which of the following and	ir of electron etric nitrogen anol gives: b) Urea alcohol ble in water because: ounds vater gen bonds with water est is given by line nines form maximum hydro	b) 2,4-dimethylaniline d) N-methylbenzylamine ogen bonds within themsel	ves?						
76. 77. 78.	c) Nitrogen has a lone pard) Of absences of asymmetric Urea on heating with ethata) Urethane Aliphatic amines are soluta) They are basic b) They are amino compositive are lighter than with the domain of hydrogan Apositive carbylamines to a) N, N-dimethylamiline c) N-methy-o-methylamic Which of the following and a) CH ₃ NH ₂	ir of electron etric nitrogen anol gives: b) Urea alcohol ble in water because: ounds vater gen bonds with water est is given by line nines form maximum hydro b) (CH ₃) ₂ NH	b) 2,4-dimethylaniline d) N-methylbenzylamine ogen bonds within themsel c) (CH ₃) ₃ N	ves? d) None of these						
76. 77. 78.	c) Nitrogen has a lone pard) Of absences of asymmetric Urea on heating with ethata) Urethane Aliphatic amines are soluta) They are basic b) They are amino compositive are lighter than with the domain of hydrogal A positive carbylamines to a) N, N-dimethylaniline c) N-methy-o-methylaniline which of the following and a) CH ₃ NH ₂ Reaction of cyclohexanon	ir of electron etric nitrogen anol gives: b) Urea alcohol ble in water because: ounds vater gen bonds with water est is given by line nines form maximum hydro b) (CH ₃) ₂ NH ne with dimethylamine in th	b) 2,4-dimethylaniline d) N-methylbenzylamine ogen bonds within themsel c) (CH ₃) ₃ N te presence of catalytic amo	ves? d) None of these ount of an acid forms a						
76. 77. 78.	c) Nitrogen has a lone pard) Of absences of asymmodurea on heating with ethata) Urethane Aliphatic amines are soluta) They are basic b) They are amino compoded of the following and a) Of formation of hydrogan A positive carbylamines to a) N, N-dimethylaniline c) N-methy-o-methylaniline c) N-methy-o-methylaniline d) CH ₃ NH ₂ Reaction of cyclohexanon compound of water during	ir of electron etric nitrogen anol gives: b) Urea alcohol ble in water because: ounds vater gen bonds with water est is given by line nines form maximum hydro b) (CH ₃) ₂ NH	b) 2,4-dimethylaniline d) N-methylbenzylamine ogen bonds within themsel c) (CH ₃) ₃ N te presence of catalytic amo	ves? d) None of these ount of an acid forms a						
76. 77. 78.	c) Nitrogen has a lone pard) Of absences of asymmetric Urea on heating with ethata) Urethane Aliphatic amines are soluta) They are basic b) They are amino compositive are lighter than with d) Of formation of hydrogan A positive carbylamines to a) N, N-dimethylaniline c) N-methy-o-methylaniline which of the following and a) CH ₃ NH ₂ Reaction of cyclohexanon compound of water during known as	ir of electron etric nitrogen anol gives: b) Urea alcohol ble in water because: ounds vater gen bonds with water est is given by line nines form maximum hydro b) (CH ₃) ₂ NH ne with dimethylamine in the	b) 2,4-dimethylaniline d) N-methylbenzylamine ogen bonds within themsel c) (CH ₃) ₃ N he presence of catalytic amo sly removed. The compoun	ves? d) None of these ount of an acid forms a nd formed is generally						
76. 77. 78. 79.	c) Nitrogen has a lone pard) Of absences of asymmeturea on heating with ethata) Urethane Aliphatic amines are soluta) They are basic b) They are amino composed of the formation of hydrogal A positive carbylamines to a) N, N-dimethylaniline c) N-methy-o-methylaniline c) N-methy-o-methylaniline a) CH ₃ NH ₂ Reaction of cyclohexanon compound of water during known as a) An amine	ir of electron etric nitrogen anol gives: b) Urea alcohol ble in water because: ounds vater gen bonds with water est is given by line nines form maximum hydro b) (CH ₃) ₂ NH he with dimethylamine in the g the reaction is continuou	b) 2,4-dimethylaniline d) N-methylbenzylamine ogen bonds within themsel c) (CH ₃) ₃ N he presence of catalytic amo sly removed. The compoun c) An enamine	ves? d) None of these ount of an acid forms a nd formed is generally d) A Schiff's base						
76. 77. 78. 79.	c) Nitrogen has a lone pard) Of absences of asymmodurea on heating with ethata) Urethane Aliphatic amines are soluta) They are basic b) They are amino compoded of the part of	ir of electron etric nitrogen anol gives: b) Urea alcohol ble in water because: ounds vater gen bonds with water est is given by line nines form maximum hydro b) (CH ₃) ₂ NH ne with dimethylamine in the	b) 2,4-dimethylaniline d) N-methylbenzylamine ogen bonds within themsel c) (CH ₃) ₃ N he presence of catalytic amo sly removed. The compoun c) An enamine	ves? d) None of these ount of an acid forms a nd formed is generally d) A Schiff's base						
76. 77. 78. 79.	c) Nitrogen has a lone pard) Of absences of asymmeturea on heating with ethata) Urethane Aliphatic amines are soluta) They are basic b) They are amino composed of the following are alighter than well of formation of hydrogal Apositive carbylamines to a) N, N-dimethylaniline c) N-methy-o-methylaniline c) N-methy-o-methylaniline which of the following are a) CH ₃ NH ₂ Reaction of cyclohexanon compound of water during known as a) An amine Benzene diazonium chloricatalyst produce	ir of electron etric nitrogen anol gives: b) Urea alcohol ble in water because: ounds vater gen bonds with water est is given by line nines form maximum hydro b) (CH ₃) ₂ NH ne with dimethylamine in the ing the reaction is continuous b) An imine ride on treatment with hyporical	b) 2,4-dimethylaniline d) N-methylbenzylamine ogen bonds within themsel c) (CH ₃) ₃ N the presence of catalytic amounts of the compounts of t	ves? d) None of these ount of an acid forms a nd formed is generally d) A Schiff's base ter in presence of Cu ⁺						
76. 77. 78. 79.	c) Nitrogen has a lone pard) Of absences of asymmodurea on heating with ethata) Urethane Aliphatic amines are soluta) They are basic b) They are amino compoded of the part of	ir of electron etric nitrogen anol gives: b) Urea alcohol ble in water because: ounds vater gen bonds with water est is given by line nines form maximum hydro b) (CH ₃) ₂ NH he with dimethylamine in the g the reaction is continuou	b) 2,4-dimethylaniline d) N-methylbenzylamine ogen bonds within themsel c) (CH ₃) ₃ N he presence of catalytic amo sly removed. The compoun c) An enamine	ves? d) None of these ount of an acid forms a nd formed is generally d) A Schiff's base						

- 81. Which one of the following does not have sp^2 hybridised carbon?
 - a) Acetone
- b) Acetic acid
- c) Acetonitrile
- d) Acetamide

82. The product of Hofmann elimination of

$$O(N)$$
 NH₂ + (CH₃)₂N

d)
$$\left\langle \begin{array}{c} + (CH_3)_4 \stackrel{+}{NOH} \right\rangle$$

- 83. The best method to synthesise m-dibromobenzene is by using the reaction
 - a) Benzene $\xrightarrow{\text{Br}_2/\text{FeBr}_3/\text{heat}}$

b) Aniline $\xrightarrow{Br_2, H_2O}$ [] $\xrightarrow{1.HONO}$

Nitrobenzene

- $\begin{array}{c} \text{C)} \xrightarrow{\text{Fuming HNO}_3} \left[\right] \xrightarrow{\text{Fe/HCl}} \left[\right] \xrightarrow{\text{1.HONO}} \\ \xrightarrow{\text{2.CuBr}} \end{array}$
- Bromobenzene
- $\frac{d)}{H_2SO_4} \xrightarrow{\text{Fe/HCl}} \left[\right] \xrightarrow{\text{Fe/HCl}} \left[\right] \xrightarrow{\text{1.HONO}}$
- 84. Aniline is reacted with Br_2 water and the resulting product is treated with an aqueous solution of sodium nitrite in the presence of diluteHCl. The compound so formed is converted into tetrafluoroborate which is subsequently heated dry. The end product is
 - a) p-bromofluorobenzene

- b) p-bromoaniline
- c) 2, 4, 6- tribromofluoro benzene
- d) 1, 3, 5- tribromobenzene
- 85. Which of the following statements is correct?
 - a) Aniline is stronger base than ammonia
 - b) Methylamine is a stronger base than aniline and ammonia
 - c) Aniline is stronger than ammonia, but weaker base than methylamine
 - d) Methylamine is stronger than aniline, but weaker base than ammonia
- 86. RNH_2 reacts with $C_6H_5SO_2Cl$ in aqueous KOH to give a clear solution. On acidification a precipitate is obtained which is due to the formation of

b)
$$R - N^{-}SO_{2}C_{6}H_{5}K^{+}$$

c) C₆H₅SO₂NH₂

- d) $R NH SO_2 C_6H_5$
- 87. When NaNO₂ and dilute HCl were added to an amine at 0°C, a colourless gas was evoloved and an ionic compound is formed. The amine is:
 - a) An primary amine
 - b) An aromatic primary amine
 - c) Any amine
 - d) None of the above
- 88. Choose the incorrect comparision(s)

$$CH_3$$
 $H_3C-C-NH_2 < CH_3-NHCH_3$
 CH_3

b) $\frac{\text{CH}_3\text{CH}_2\text{CH}_2\text{NH}_2 > (\text{CH}_3)_3\text{N}}{(\text{basicity in aqueous medium})}$

(basicity in aqueous medium)

c) CH₃ (basicity in the gaseous state)

- $3N \longrightarrow N(1) > N(3)$
- (basicity in aqueous

medium)

- 89. Grignard reagent and acetyl chloride does not react with:
 - a) RNH₂
- b) R_2NH
- c) R_3N

d) None of these

90.	Which of the following can be used to distinguish a	acetamide and urea?	
	a) Fehling's solution b) Biuret test	c) Hofmann's reaction	d) NaOH solution
91.	Among the amines $(A)C_6H_5NH_2$, $(B)CH_3NH_2$, (C)		
	$(CH_3)_2NH$, $(D)(CH_3)_3N$, the order of basicity is		
	a) $A < B < D < C$		
	b) $D < C < B < A$		
	c) $A < B < C < D$		
	d) B < C < D < A		
92.	Choose the incorrect statement		780 W 1801
	a) In the case primary, secondary and tertiary ami		nds on the extent on the
	extent of hydrogen bonding in the protonated a		
	b) The presence of groups like – OCH ₃ and – CH ₃ in	1. The state of th	
	c) The presence of groups like – NO ₂ , –CN and hal		ength of amines
	d) The basic strength of amines depends on their of		9 9V
93.	An organic amino compound reacts with aqueous	nitrous acid at low tempera	ture to produce an oily
	nitrosoamine. The compound is		()
	a) CH ₃ NH ₂ b) CH ₃ CH ₂ NH ₂	c) CH ₃ CH ₂ NHCH ₂ CH ₃	d) $(CH_3CH_2)_3N$
94.	RMgX on reacting with cyanogen chloride gives:	3.0.00	N. 1.
	a) <i>R</i> —NC b) <i>R</i> —Cl	c) R—CN	d) None of these
95.	Ethyl isocyanide on hydrolysis in acidic medium g		
	a) Ethyl amine salt and methanoic acid	b) Propanoic acid and ar	
0.0	c) Ethanoic acid and ammonium salt	d) Methyl amine salt and	l ethanoic acid
96.	Which of the following will give a primary amine of		DAULT.
07	a) Nitroparaffin b) Alkyl cyanide	c) Oxime	d) Alkyl isocyanate
97.	Urea when heated a white residue is formed. Its	aikaiine solution when trea	ted with few drops of $cuso_4$
	solution gives:	a) Cusan salamu	d) Vallani aalanii
00	a) Red colour b) Violet colour Which one of the following is most basic?	c) Green colour	d) Yellow colour
90.	a) FCH ₂ NH ₂ b) FCH ₂ CH ₂ NH ₂	c) C ₆ H ₅ NH ₂	d) C ₆ H ₅ CH ₂ NH ₂
99	The basicity of compounds I, II, III and IV	c) C ₆ H ₅ NH ₂	u) C6H5CH2NH2
77.	CH ₃ NH ₂ , (CH ₃) ₂ NH, (CH ₃) ₃ N, C ₆ H ₅ CH ₂ NH ₂		
	I II III IV		
	varies in the order		
	a) I > II > III > IV b) II > I > III > IV	c) $III > I > II > IV$	d) $IV > I > II > III$
100	A gaseous carbon compound is soluable in dilute H		
100	nitrogen leaving behind a solution which smells of		
	a) HCHO b) CO	c) C ₂ H ₅ NH ₂	d) CH ₃ NH ₂
101	The correct order of basic nature of the following		(T.Z.) (T.T.) 3 (1.T.) 4
	∠NH	Secretarian (C. C.) Control (C.) Control (C.) To house	
	CH_3-C $CH_3CH_2NH_2$ (2)		
	NH ₂		
	(1) Q		
	(CH.) NH		
	$(CH_3)_2NH$ $CH_3-\ddot{C}-NH_2$		
	(4)		
	a) 2 > 1 > 3 > 4		
	b) 1 > 3 > 2 > 4		

102. The basic character of amines can be explained:

c) 3 > 1 > 2 > 4d) 1 > 2 > 3 > 4

- a) In terms of Lewis and Arrhenius concept
- b) Only in terms of Lowry Bronsted concept
- c) It terms of Lewis and Lowry Bronsted concept
- d) Only in Lewis concept
- 103. Gas evolved during the reaction of sodium metal on ethyl amine is:
 - a) N_2

- b) C₂H₂
- c) H₂

- d) CO2
- 104. When methyl cyanide is hydrolysed in presence of alkali, the product is:
 - a) Acetamide
- b) Methane
- c) $CO_2 + H_2O$
- d) Acetic acid
- 105. An organic compound (C_3H_9N) (A), when treated with nitrous acid, gave an alcohol and N_2 gas was evolved. (A) on warming with CHCl₃ and caustic potash gave (C) which on reduction gave isopropylmethylamine. Predict the structure of (A).

a)
$$\frac{\text{CH}_3}{\text{CH}_3}$$
 $\frac{\text{CH} - \text{NH}_2}{\text{CH}_3}$

106.

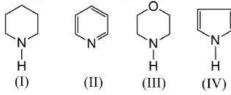
This reaction is called

- a) Cope reaction
- b) Ritter reaction
- c) Schmidt reaction
- d) Gabriel reaction
- 107. Which of the following regents will be useful as the basic for a simple chemical test to distinguish between?

$$H_3C$$
 \longrightarrow NH_2 and \bigcirc \longrightarrow CH_2NH_2

a) C₆H₅SO₂Cl and OH⁻ in H₂O

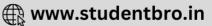
b) HONO, then β-naphthol


c) Dilute HCl

- d) AgNO3 in H2O
- 108. Alkanamide, which on Hofmann's reaction gives 1-phenylethylamine, is:
 - a) 2-phenylpropanamide
 - b) 3-phenylpropanamide
 - c) 2-phenylethanamide
 - d) N-phenylethanamide
- 109. Reduction of nitrobenzene in the presence of Zn/NH4Cl gives
 - a) Azobenzene

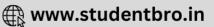
b) Hydrazobenzene

c) N-phenyl hydroxylamine


- d) Aniline
- 110. Arrange the following compounds in increasing order of basic strength

- a) IV>I>III>II
- b) III>I>IV>II
- c) II>I>III>IV
- d) I>III>IV
- 111. Which of the following reactions can be used to prepare ethyl isocyanide?
 - a) $CH_3CH_2I + NaCN \xrightarrow{C_2H_5OH/H_2O}$

b) $CH_3CH_2I + KCN \xrightarrow{Alcohol}$



c) $CH_3CH_2NH_2 + CHC$	$CL_3 + KOH \xrightarrow{Alcohol}$	d) None of the above	
112. An amine reacts with	C ₆ H ₅ SO ₂ Cl and the produc	t is soluble in alkali, amine is	:
a) 1°	b) 2°	c) 3°	d) All of these
	tubes are not thrown into	sink, to avoid bad odour, but	are treated with conc. HCl to
give:			
a) $RCOOH + NH_3$	b) RNH ₂	c) $RNH_2 + HCOOH$	d) $RCOOH + N_2$
114. The product obtained	when methylamine is trea	ted with nitrous acid is:	
a) CH ₃ OH	b) CH ₃ —ONO	c) CH ₃ OCH ₃	d) Both (b) and (c)
115. Correct order of basic	nature of $CH_3NH_2(A)$, CH_3	$_{3}CN(B)$ and $CH_{3}N = CHCH_{3}($	C) is
a) $A > B > C$	b) $B > C > A$	c) $A > C > B$	d) $C > A > B$
116. Which of the following	g reactions can produce an	iline as main product?	
a) $C_6H_5NO_2 + Zn/KO$	Н	b) $C_6H_5NO_2 + Zn/NH_4$	Cl
c) $C_6H_5NO_2 + LiAlH_4$		d) $C_6H_5NO_2 + Zn/HCl$	
117. The name urea given			
a) Wöhler	b) Berzelius	c) Roulle	d) Lemery
118. Which of the following			
a) Amylase	b) Urease	c) Lipase	d) Zymase
119. $A \xrightarrow{\text{H}_2\text{NOH}} B \xrightarrow{\text{Reduction}} C$	\longrightarrow CH ₃ CH ₂ Cl		
In the above sequence	e A and C are		
a) Methanal, methyl a	mine	b) Acetone, ethaneamir	ne
c) Ethanal, diamethyl	amine	d) Acetaldehyde, ethyl	amine
120. In alkyl cyanide alkyl	group attached with		
a) C of CN group		b) N of CN group	
c) Either C or N of CN	group	d) Both C and N of CN g	roup
121. Amine oxide, when he	eated froms alkene. The rea	action is known as	
a) Curtius		b) Cope elimination	
c) Mannich reaction		d) Hofmann elimination	ı
122. p – amine and s – ami			
a) Br ₂ /KOH	b) HClO	c) HNO ₂	d) NH ₃
123. In which reaction, niti	rene is not the intermediat		
a) Schmidt		b) Curtius	
c) Hofmann bromami		d) Gabriel's phthalimid	e
124. Urea reacts with HNO	57 LD		
a) Urea nitrite	b) Urea nitrate	c) H ₂ CO ₃	d) None of these
125. In reduction of nitrob	enzene, which of the follow	ving is the intermediate?	
3.1110	13.1		0
a) фN0	b) фNНNНф	c) $\phi N = N - \phi$	d) ↑
404 D 111 1 4			$\phi N = N - \phi$
126. Benzaldehyde reacts			D.C. H. CONH
a) C ₆ H ₅ NH ₂	b) C ₆ H ₅ CH ₂ NH ₂	c) C ₆ H ₅ CH= NCH ₃	d) C ₆ H ₅ CONH ₂
127. The compound that w			4) (CH) CCI
a) (CH ₃) ₄ N ⁺ I ⁻	b) CH ₃ OCH ₃	c) (CH ₃)S ⁺ I ⁻	d) $(CH_3)_3CCI$
128. KCN reacts readily to a) Ethyl alcohol	b) Ethyl bromide	c) Bromobenzene	d) ahlavahangana
	I ₂ NH ₂ HCl	c) bromobenzene	d) chlorobenzene
In the reaction,	$\xrightarrow{\Delta}$ Product:		
	I ₂ NH ₂ HCl		
The product is:	42		
The product is:			

Urea +B \rightarrow H₂N - NHCONH₂ + NH₃ CH₂H₅NH₂ + C \rightarrow C₂H₅Cl + H₂O + N₂

a) CH₃CHO, NH₂ - NH₂and PCl₅

c) C₆H₅CHO, NH₂ - NH₂and NOCl

144. Nitroparaffins on reduction give:

a) Amides

b) Alkylamines

145. Aniline is prepared in presence of Fe/HCI from

a) Benzene

b) Nitrobenzene

d) CH₃CHO, NH₂ - NH₂and PCl₃

c) Ammonium salts

b) C₆H₅CHO, NH₂ - NH₂and SOCl₂

d) Acetanilides

c) Dinitrobenzene

d) None of these

146. In the following reaction, the product *X* is:

147. Which one of the following compound is most basic?

$$\bigcap_{(A)}^{\mathsf{H}}\bigcap_{(B)}^{\mathsf{N}}\bigcap_{(C)}^{\mathsf{H}}\bigcap_{(C)}^{\mathsf{H}}$$

c) (C)

d) All are equally basic

148.
$$C_6H_5NH_2 \xrightarrow{H_2SO_4} H_2NC_6H_4(SO_3H)$$
(para)

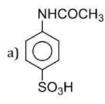
The true statement about the product is

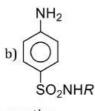
- a) It does not exist as Zwitter ion
- b) -NH2displays a powerful basic character
- c) It does not act as inner salt
- d) -SO₃ dimminishes the basic character of NH₂

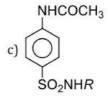
$$Ac_2O A \xrightarrow{Br_2} B \xrightarrow{H_2O} C$$

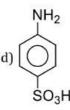
$$CH_3$$

The final product 'C' in the above reaction is

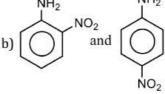



- 150. Which of the following compound reacts with chloroform and a base to form phenyl isocyanide?
 - a) Phenol
- b) Aniline
- c) Benzene
- d) Nitrobenzene


151. NH₂


$$(i) (CH3CO)2O (ii) HOSO2CI
(iii) RNH2 (iv) dil. HCl, \triangle [X];$$

here X is


- 152. Amine is not formed in the reaction
 - (A) Hydrolysis of RCN
 - (B) Reduction of RCH = NOH
 - (C) Hydrolysis of RNC
 - (D) Hydrolysis of RCONH2

The correct answer is

- a) A, B, D
- b) A, D
- c) B, C

d) A, B, C

153. Aniline reacts with conc. HNO₃ to give

- d) NO
- 154. The pri., sec. and ter. amines can be distinguished by:
 - a) Hinsberg's reagent
- b) Grignard reagent
- c) Fehling's solution
- d) Tollen's reagent
- 155. Which one of the following is not the correct reaction of aryl diazonium salts?
 - a) $C_6H_5N_2^+CI^- + Cu_2CI_2 \rightarrow C_6H_5CI$
- b) $C_6H_5N_2^+CI^- + HBF_4 \xrightarrow{Heat} C_6H_5F$
- c) $C_6H_5N_2^+CI^- + H_3PO_2 \rightarrow C_6H_5PO_4$
- d) $C_6H_5N_2^+CI^- + SnCI_2/HCI \rightarrow C_6H_5NHNH_2$

- 156. The geometry of ethylamine is:
 - a) Pyramidal
- b) Tetrahedral
- c) Triangular
- d) Square planar

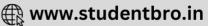
157. Consider the following reaction,

$$C_6H_5NO_2 \xrightarrow{Sn/HCI} X \xrightarrow{C_6H_5COCI} Y + HCI$$

What is Y?

- a) Acetanilide
- b) Benzanilide
- c) Azobenzene
- d) Hydrazobenzene

158. $\left[\stackrel{\frown}{\text{15}} \right] \stackrel{\Gamma}{\text{15}} \stackrel{\text{Ag}_2\text{O}}{\text{H}_2\text{O}} X \stackrel{\text{400 K}}{\text{15}}$


The products of above sequence of reactions are

a) $CH_2 = CH_2$ and $(CH_3)_2CHCN$

b) CH₃CH₂CN and C₂H₅NH₂

c) $CH_2 = CH_2$ and $(CH_3)_3N$

d) $(CH_3)_2 C = CH_2$ and NH_3

159. Which of the following is hydrolysed to give secondary amine? a) Alkyl c) Nitroparaffins d) Acidamide 160. Carbylamine reaction is given by aliphatic a) Primary amine b) Secondary amine c) Tertiary amine d) Quaternary ammonium salt 161. Ethyl amine reacts with nitrous acid to form a) C₂H₅OH c) $C_2H_5N_2^+CI^$ d) C2H5NHOH, NH3 b) C₂H₅OH, N₂, H₂O 162. Aniline reacts with ... to yield ... as the final product. a) Bromine, 2-bromoaniline b) Bromine, 2, 4, 6-tribromoaniline c) Chloroform/KOH, phenyl cyanide d) Acetyl chloride, benzanilide 163. The amine which will not liberate nitrogen on reaction with nitrous acid is a) Trimethyl amine b) Ethyl amine c) Sec-butyl amine d) t-butyl amine 164. Which of the following reagents will convert nitromethane into methylamine? a) Zn/HCl b) Zn/NaOH c) Zn/C2H5OH d) Ni/H₂ 165. Tertiary nitroalkane cannot tautomerise because a) Their tautomeric forms are highly unstable b) They do not contain any multiple bond c) They do not have labile H-atom d) They are not basic in nature 166. [X] and [Y] are 167. In the reaction NO₂

Xis

b) H₂SO₄

c) KMnO₄

d) Fe/HCl

168. A compound A when reacted with PCl₅ and then with ammonia gave B. B when treated with bromine and caustic potash produced C.C on treatment with NaNO2 and HCl at 0°C and then boiling produced orthocresol. Compound Ais:

a) o-toluic acid

b) o-chlorotoluene

c) o-bromotoluene

d) m-toluic acid

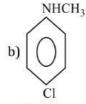
169. The correct order of basicities of the following compound is

$$CH_3-C \stackrel{\mathsf{NH}}{\underset{\mathsf{NH}_2}{\longleftarrow}} CH_3CH_2NH_2$$

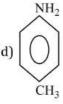
(CH₃)₂NH
$$CH_3$$
 CH_3 CH_3 CH_3 CH_3

- a) 2>1>3>4
- b) 1>3>2>4
- c) 3>1>2>4
- d) 1>2>3>4

170. Which of the following amines is optically active?

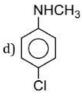

- a) CH₃NH₂
- b) CH₃NHCH₃

- d) Sec. butylamine
- 171. CH₃CH₂NH₂ contains a basic NH₂ group, but CH₃CONH₂ does not, because:
 - a) Acetamide is amphoteric in character
 - b) In CH₃CH₂NH₂ the electron pair on N-atom is delocalised by resonance
 - c) $\frac{\text{In CH}_3\text{CH}_2\text{NH}_2\text{ there is no resonance, while in acetamide } \text{the lone pair of electron on N-atom is } \text{delocalised and therefore less available for protonation}$
 - d) None of the above
- 172. Benzaldehyde condenses with N, N-diamethylaniline in presence of anhydrous ZnCl2 to give
 - a) Azo dye
- b) Malachite green
- c) Michler's ketone
- d) Buffer yellow

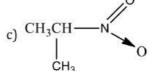

173. Identify X in the reaction,

- 174. Aliphatic nitriles are prepared by the treatment of alkyl halides with
 - a) Sodium cyanide
- b) Sodium isocyanide
- c) Sodium isocyanate
- d) Cyanamide

- 175. Diethylamine on oxidation with KMnO₄ gives:
- b) Propanone
- c) Tetraethyl hydrazine
- d) None of these
- 176. Which one of the following amines will not react with HNO_2 acid to give nitrogen?
 - a) CH₃NH₂
- b) CH₃CH₂NH₂


What is [B]?

- 178. C₅H₁₃N reacts with HNO₂ to give an optically active alcohol. The compound is
 - a) Pentan-1-amine


b) Pentan-2-amine

c) N, N-dimethylpropan-2-amine

- d) N-methylbutan-2-amine
- 179. Which of the following is not a nitro-derivative?

b) CH₃CH₂ONO

- 180. Hinsberg's reagent is
 - a) C₆H₅COCI
- b) CH₃COCI
- c) C₆H₅CH₂CI
- d) C₆H₅SO₂CI

- 181. Among the following the weakest base is
 - a) C₆H₅CH₂NH₂
- b) C₆H₅CH₂NHCH₃
- c) O₂NCH₂NH₂
- d) CH₃NHCHO

- 182. A secondary amine is:
 - a) A compound with two —NH₂ groups
 - b) A compound with 2 carbon atoms and a -NH2 group
 - c) A compound with a —NH₂group on the carbon atom in number 2 position
 - d) A compound in which 2 of the hydrogens of NH3 have been replaced by alkyl or aryl groups
- 183. Benzyl amine reacts with nitrous acid to give
 - a) Azobenzene
- b) Benzene
- c) Benzyl alcohol
- d) Phenol

- 184. Urea is not used:
 - a) As fertilizer
 - b) In manufacture of plastic
 - c) In preparation of medicines
 - d) In purification of water
- 185. Which of the following statements is not correct?
 - a) Primary amines show intermolecular hydrogen bonding
 - b) Secondary amines show intermolecular hydrogen bonding
 - c) Tertiary amines show intermolecular hydrogen bonding
 - d) Amines have lower boiling points as compared to those of alcohols and carboxylic acids of comparable molar masses
- 186. The structural formula of methyl amino methane is:
 - a) (CH₃)₂CHNH₂
- b) $(CH_3)_3N$
- c) $(CH_3)_2NH$
- d) CH₃NH₂

- 187. Aniline and ethylamine resembles in:
 - a) Solubility
 - b) Action with HNO2
 - c) Action of Grignard reagent
 - d) Coupling reaction
- 188. What is the proper sequence of reagent in the Hofmann's degradation reaction?
 - a) Br2, KOH, H2O
- b) KOH, Br₂, H₂O
- c) H₂O, KOH, Br₂
- d) KOH, H2O, Br2
- 189. Primary, secondary and tertiary nitroalkanes can be identified by the action of:
 - a) $HNO_2 + NaOH(aq.)$
- b) $CHCl_3 + NaOH(aq.)$
 - c) $CHCl_3 + KOH(alc.)$
- d) None of these
- 190. Primary, secondary and tertiary amines may be separated by using:
 - a) Ethanoyl chloride
- b) Diethyl oxalate
- c) Thionyl chloride
- d) None of these
- 191. The active species produced in Hofmann's bromamide reaction is:

CLICK HERE

- a) Br-
- b) Br₂
- c) OBr-
- d) OBr_2
- 192. An aliphatic nitro compound turns red with the addition of a concentrated NaOH solution, followed by the addition of an excess of an NaNO2 solution and then dilute H2SO4. The colour disappears with the addition of the excess of an acid but reappears if the solution is made alkaline. The aliphatic nitro compound is
 - a) CH₃CH₂NO₂
- b) (CH₃)₂CHNO₂
- c) $(CH_3)_3CNO_2$
- d) All of these

- 193. Isopropylamine
- $\xrightarrow{\text{KMnO}_4} X \xrightarrow{\text{H}_3\text{O}^+} Y$. In the above sequence X and Y are respectively
 - a) Acetaldimine, ethanal

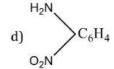
b) Ethanal, ketimine

c) Ketimine, acetone

- d) Acetone, propan-2-ol
- 194. Benzyl amine cannot be prepared by
 - a) $C_6H_5CONH_2 \xrightarrow{LiAlH_4}$

b) $C_6H_5CH_2CONH_2 + Br_2 + KOH \rightarrow$

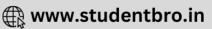
c) $C_6H_5CN \xrightarrow{LiAlH_4}$


- d) $C_6H_5CH_2NC \xrightarrow{\text{LiAlH}_4}$
- 195. When $(NH_4)_2SO_4 + KCNO$ are heated, we get:
 - a) Nitrogen
 - b) Carbon dioxide
 - c) Biuret
 - d) Ammonium carbonate
- 196. Which of the following is most basic in aqueous medium?
 - a) CH₃CH₂CH₂CH₂NH₂

- b) $CH_3 CH_2 CH_2 NH_2$ CH_3 $CH_3 CH_2 NH CH_3$
- 197. Diazomethane reacts with carboxylic acids to produce:
 - a) Ester
- b) Alcohol
- c) Amine
- d) Imines
- 198. Hinsberg's method to separate amines is based on the use of:
 - a) Benzene sulphonyl chloride
 - b) Benzene sulphonic acid
 - c) Ethyl oxalate
 - d) Acetyl chloride
- 199. CH₃CONH₂. Br₂ and KOH give CH₃NH₂ as the product. The intermediates of the reaction are
- B) $CH_3 N = C = 0$
- (C)CH₃NHBr
- (D) CH₃CONBr₂
- The correct answer is
- a) A, B

b) A, C

- c) C, D
- d) B, D


- 200. Which will not go for diazotization?
 - a) $C_6H_5NH_2$
- b) C₆H₅CH₂NH₂

- 201. Amine may contain:
 - a) —NH₂gp
- b) NH gp.
- c) \geqslant N gp.
- d) All of these
- 202. Nitration of aniline also gives m-nitro aniline in strong acidic medium because

 - a) In electrophilic substitution reaction amino group is meta directive b) Inspite of substituents nitro group always goes to m-position

- c) In strong acidic medium aniline aniline present as d) None of the above
- 203. In the reaction $RCONH_2 + X \rightarrow RNH_2$, the regent X is
 - a) Soda lime
- b) PCl₅
- c) NaOBr
- d) All of these
- 204. The bad smelling substance formed by the action of alcoholic caustic potash on chloroform and aniline is
 - a) Nitrobenzene
- b) Phenyl isocyanide
- c) Phenyl cyanide
- d) Phenyl isocyanate
- 205. How may primary amines are possible for the formula C₄H₁₁N?

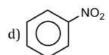
d) 4

The compound B is

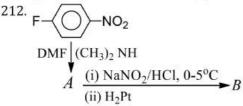
d)
$$Br$$
 Br

- 207. $R N = C + HgO \longrightarrow A + Hg_2O$; What is A?
 - a) RNH₂
- b) RCONH₂
- c) R-NCO
- d) RCOOH
- 208. Which of the following on reduction with LiAlH₄ gives a secondary amine?
 - a) CH₃NC
- b) CH₃CONH₂
- c) CH₃CN
- d) CH₃NO₂
- 209. Aniline on treatment with NaNO₂ in HCI at 0°C followed by treatment with alkaline β –naphthol gives
 - a) A violet solution

b) A red solution


c) A green solution

- d) A blue precipitate
- 210. The compound with foul odour among the following is

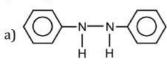


- 211. Aniline first reacts with acetyl chloride producing compound 'A'. 'A' reacts with nitric acid/sulphuric acid mixture and produces compound 'B', which hydrolyses to compound 'C'. What is the identify of 'C'?
- a) Acetanilide
- b) *p*-nitroacetanilide
- c) p-nitroaniline
- d) Aniline

In the above sequence B is

- 213. The product *A* and *B* in the reaction are:
 - $C_2H_5NH_2 + CHCl_3 + 3KOH \rightarrow A + B + 3H_2O$
 - a) $C_2H_5NC + 3KCl$
- b) $C_2H_5CN + 3KCl$
- c) $C_2H_5CONH_2 + 3KCl$
- d) $C_2H_5NC + K_2CO_3$
- 214. When aqueous solution of benzene diazonium chloride is boiled, the product formed is
 - a) C₆H₅CH₂OH
- b) $C_6H_6 + N_2$
- c) C₆H₅COOH
- d) C_6H_5OH

215. Correct order of basicity of $\phi_{NH_2[A]}$, (


$$OCH_3$$
 OCH_3 OCH_3 OCH_3 OCH_3 OCH_3 OCH_3 OCH_3

- a) A > B > C > D
- b) D > C > A > B
- c) B > D > C > A
- d) D > A > B > C

216. Tertiary amine is obtained in the reaction

- a) Aniline $\xrightarrow{CH_3I} \xrightarrow{CH_3I}$
- b) Aniline $\stackrel{CH_3I}{\longrightarrow}$
- c) Nitrobenzene $\xrightarrow{Sn/HCl}$
- d) None of these

217. The structure of the compound formed, when nitrobenzene is reduced by lithium aluminium hydride (LiAIH₄)is

НОНИ

c)
$$\bigcirc$$
-N=N- \bigcirc

218. Why do 2° and 3° amines fail to undergo the carbylamines test?

- a) They combine with chloroform to give a stable compound
- b) They react with alcoholic KOH
- c) They nitrogen atom of the amine group does not have the required number of hydrogen atoms
- d) All the given reasons are correct
- 219. Nitrogen of nitrobenzene at 125°C with mixed acids gives
 - a) meta-dinitrobenzene

b) ortho-dinitrobenzene

c) para-dinitrobenzene

d) 1, 3, 5-trinitrobenzene

220. Complete the following reaction

 $RNH_2 + H_2SO_4 \rightarrow$

- a) $[RNH_3]^+HSO_4^-$
- b) $[RNH_3]_2^+SO_4^{2-}$
- c) RNH2. H2SO4
- d) No reaction

221. Ethylamine reacts with nitrosyl chloride (NOCl)to form:

- a) Ethyl chloride
- b) Ethyl alcohol
- c) Ethyl nitrite
- d) Nitroethane
- 222. Reduction of aniline with acetyl chloride in presence of NaOH produce

 - a) Aniline hydrochloride b) Acetanilide
- c) p-choloroaniline
- d) A red dye

223. Amino group is ortho/para-directing for aromatic electrophilic substitution. On nitration of aniline, a good amount of m-nitroaniline is obtained. This is due to

- a) In nitration mixture, ortho, para-activity of NH2 group is completely lost
- b) -NH₂ because NH₃⁺, which is m-directing
- c) -NH₂ becomes NH⁺SO₄, which is m-directing
- d) $-NH_2$ becomes $-NH^-NO_2^+$, which is *m*-directing

224. p-chloro aniline and anilinium hydrogen chloride can be distinguished by

a) Sandmeyer reaction

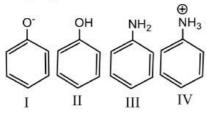

b) Carbylamines reaction

c) Hinsberg's reaction

- 225. Nitrobenzene on reduction with Al-Hg and water gives:
 - a) Azobenzene
 - b) Aniline
 - c) Azoxy benzene
 - d) phenylhydroxylamine
- 226. Which of the following is most basic in nature?
 - a) NH₃
- b) CH₃NH₂
- c) $(CH_3)_2NH$
- d) $C_6H_5N(CH_3)_2$

227. The reaction of CHCI3 and alcoholic KOH with p-toluidine gives

a)
$$H_3C$$
—NCO b) H_3C —CNO c) H_3C —NC d) H_3C —CNO


228. The IUPAC name of, CH₃-CH₂-CH-NH₂ is:

- a) 1-methyl-amino propane
- b) 2-aminobutane
- c) 2-methyl-2-aminopropane
- d) None of the above

229. and -R - O - N = O are....isomers.

- a) Chain
- b) Functional
- c) Position
- d) All of these
- 230. Which of the following is not used for nitration of organic compounds?
 - a) $_{H_2SO_4}^{A\ mixture\ of\ concentrated\ HNO_3}$ and concentrated $_{b)}^{A\ mixture\ of\ concentrated\ HNO_4}$ and acetic anhydride
 - d) Alcoholic potassium nitrate c) Fuming nitric acid and concentrated sulphuric
- 231. *n*-propylamine yields a volatile compound *X* on warming with alc. alkali and chloroform. *X* has an offensive odour. The structure of X is
 - a) CH₃CH₂CH₂CN
- b) $(CH_3)_2CHCN$
- c) CH₃CH₂CH₂NC
- d) (CH₃)₂CHNC
- 232. n-butylamine (I), diethylamine (II) and N, N-dimethylethylamine (III) have the same molar mass. The increasing order of their boiling point is
 - a) III < II < I
- b) I < II < III
- c) II < III < I
- d) II < I < III

- 233. Aniline reacts with acetaldehyde to form
 - a) Schiff's base
- b) Carbylamine
- c) Immine
- d) None of these
- 234. Coupling of diazonium salts of following takes place in the order

- a) IV < II < III < I
- b) IV > III < II < I
- c) II < IV < I < III
- d) I < II < III < IV
- 235. The general formula of quaternary ammonium compound is:
 - a) R— NH_2
- b) R_3N
- c) $[R_4N]^+X^-$
- d) NH₄X
- 236. Which of the following statement about primary amines is false?
 - a) Alkylamines are stronger base than arylamines
 - b) Alkylamines react with nitrous acid to produce alcohols
 - c) Arylamines react with nitrous acid to produce phenols
 - d) Alkylamines are stronger bases than ammonia.
- 237. The end product in the below reaction is


$$\mathsf{C_2H_5NH_2} \xrightarrow{\mathsf{HNO}_2} A \xrightarrow{\mathsf{PCl}_5} B \xrightarrow{\mathsf{NH}_3} C$$

- a) Ethyl cynide
- b) Ethyl amine
- c) Methyl amine
- d) Acetamide
- 238. In hypobromite reaction of amide, carbonyl carbon atom is lost as:
 - a) CO

- b) CO₂
- c) CO_3^{2-}
- d) None of these

239. Identify the product Z in the following reaction scheme

$$C_6H_5NH_2 \xrightarrow{Ac_2O} X \xrightarrow{Br_2/CCl_4} Y \xrightarrow{HOH} Z$$

a) p-bromoaniline

b) p-bromoacetophenone

c) p-bromoacetanilide

d) o-bromoacetophenone

240. Which of the following is not correct?

- a) Ethylamine and aniline both have NH2 group
- b) Ethylamine and aniline both dissolve HCl
- c) Ethylamine and aniline both react with CHCl₃ and KOH to form unpleasant smell
- d) Ethylamine and aniline both react with NaNO₂ + HCl to give hydroxyl compounds in cold
- 241. The reduction of CH₃CN to CH₃CH₂NH₂ is called:
 - a) Rosenmund's reduction
 - b) Clemmensen's reduction
 - c) Mendius reduction
 - d) Hofmann's reduction

242. Phenyl cyanide cannot be obtained by

a)
$$C_6H_5CONH_2 \xrightarrow{P_2O_5,\Delta}$$

b)
$$C_6H_5 - CH = NOH \frac{Ac_2O,\Delta}{C}$$

c)
$$C_6H_5Cl \xrightarrow{alc.KOH}$$

b)
$$C_6H_5 - CH = NOH \xrightarrow{Ac_2O,\Delta}$$

d) $C_6H_5NH_2 \xrightarrow{1.NaNO_2/HCl}$

243. Which nitro compound will show tautomerism?

- a) $C_6H_5NO_2$
- b) (CH₃)₃CNO₂
- c) CH₃CH₂NO₂
- d) o-nitrotoluene

244. Alkyl halide (RX) on treatment with KCN followed by reduction leads to formation of:

- a) RNH₂
- b) RCH₂NH₂
- c) $RH + NH_3$
- d) $RCH_3 + N_2$

245. Aniline gives a precipitate with bromine. The colour of precipitate is

- b) Black
- 246. The reagent that reacts with nitromethane to form methyl hydroxylamine is
- d) White

- b) Zn/NH₄CI
- c) Zn/NaOH
- d) Sn/HCI

247. Identify the product in the following sequence 3, 4, 5-tribromoaniline (i)Diazotization

$$(i)$$
Diazotization
 (ii) H₃PO₂

a) 3, 4, 5-tribromobenzene

b) 1, 2, 3-tribromobenzene

c) 2, 4, 6-tribromobenzene

- d) 3, 4, 5-tribromonitrobenzene
- 248. Production of amines by ammonia and alkyl halides is called
 - a) Frankland reaction

- b) Hofmann's ammonolysis
- c) Hofmann's mustrard oil reaction
- d) Hofmann's bromamide reaction
- 249. m-fluoronitrobenzene is best synthesized by using the reaction
 - a) Nitrobenzene $\xrightarrow{\text{Fuming HNO}_3} [] \xrightarrow{\text{NH}_3/\text{H}_2\text{S}} [] \xrightarrow{\text{1.HONO}}$

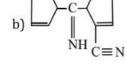
c) Fluorobenzene $\xrightarrow{H_2SO_4,heat}$

- b) Aniline $\frac{F_2}{\text{heat}}$ d) $m\text{-}C_6\text{H}_4(\text{NH}_2)_2 \xrightarrow{2.\text{CuNO}_2,3.\text{HBF}_4}$
- 250. Allyl isocyanide containsand.....bonds.
 - a) 9σ , 3π
- c) 3\sigma, 4\pi
- d) 5σ , 7π

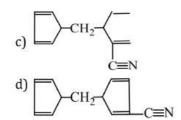
251.


When
$$\begin{bmatrix} CH_3 \\ | \\ CH_3CH_2CH_2 - {}^+N - CH_2CH_3 \\ | \\ CH_3 \end{bmatrix} OH^-$$

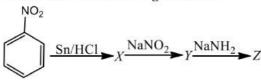
Is heated, then

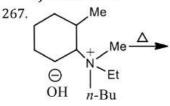

a) Propene is the major product

- b) Ethane and C₃H₇N(CH₃)₂ are the only product
- c) Ethane and propene are obtained while ethane as d) Equimolar amounts of ethane and propene are the major product
- obtained



252. In the following reaction, $X \xrightarrow{\text{Bromination}} Y \xrightarrow{\text{HACI}} Z \xrightarrow{\text{Boiling}} \text{tribromo benzene. } X \text{ is}$ a) Benzoic acid b) Salicylic acid d) Aniline 253. Reaction of nitrous acid on 1° aliphatic amines in cold will give: b) An alcohol d) A dye a) A diazonium salt 254. Benzoyl chloride does not react with: a) Primary or secondary amines b) Aliphatic compounds c) Aromatic compounds d) Carboxylic acids 255. The compound, N-ethyl-N-methylpropanamine forms non- superimposable mirror image but does not show optical activity. This is due to a) Absence of a chiral N-atom b) Presence of a chiral N- atom c) Presence of lone pair on N-atom d) Rapid flipping of one from into another 256. C=0 compounds reacts with NH₃ or amines followed by H₂/Ni. The reaction is called a) Mendius reaction b) Hofmann bromamide c) Reductive amination d) Gabriel's phthalimide 257. Decreasing order of basic nature in aqueous solutions a) $C_6H_5NH_2 > NH_3 > CH_3NH_2 > (CH_3)_2NH$ b) $NH_3 > C_6H_5NH_2 > CH_3NH_2 > (CH_3)_2NH$ c) $(CH_3)_2NH > CH_3NH_2 > NH_3 > C_6H_5NH_2$ d) $CH_3NH_2 > (CH_3)_2NH > NH_3 > C_6H_5NH_2$ 258. Comparing basic strength of NH₃, CH₃NH₂ and C₆H₅NH₂ it may be concluded that a) Basic strength remains unaffected b) Basic strength of alkyl amines is lowest c) Basic strength of aryl amines is lowest d) Basic strength of NH3 is highest 259. Decreasing order of basicity of the three isomers of methoxyaniline is a) $p\text{-CH}_3\text{OC}_6\text{H}_4\text{NH}_2 > o - \text{CH}_3\text{OC}_6\text{H}_4\text{NH}_2 > m - \text{CH}_3\text{OC}_6\text{H}_4\text{NH}_2$ b) p-CH₃OC₆H₄NH₂ > m - CH₃OC₆H₄NH₂ > o - CH₃OC₆H₄NH₂ c) $o-CH_3OC_6H_4NH_2 > p-CH_3OC_6H_4NH_2 > m-CH_3OC_6H_4NH_2$ d) o-CH₃OC₆H₄NH₂ > m - CH₃OC₆H₄NH₂ > p - CH₃OC₆H₄NH₂ 260. Which one of the following is the strongest base in aqueous solution? a) Trimethylamine b) Aniline c) Dimethylamine d) Methylamine 261. Which compound is known as alkyl carbylamines? a) R.CN b) R. NC c) Ar. CN d) Ar. NC 262. The product D in the following sequence of reactions is, $\operatorname{CH_3COOH} \xrightarrow{\operatorname{NH_3}} A \xrightarrow{\operatorname{Heat}} B \xrightarrow{\operatorname{P_2O_5}} C \xrightarrow{\operatorname{Na+C_2H_5OH}} D:$ c) Acid d) Alcohol 263. $C_6H_5NH_2 \xrightarrow{NaNO_2} X \xrightarrow{Cu_2(CN)_2} Y \xrightarrow{H_2O/H^+} Z$ Z is identified as c) $C_6H_5 - CH_2 - NH_2$ d) $C_6H_5 - CH_2COOH$ a) $C_6H_5 - NH - CH_3$ b) $C_6H_5 - COOH$ 264. The product [A] formed in the reaction; $2C_5H_5 - CN \xrightarrow{Na} [A]$ is:





- 265. Gabriel's sunthesis is used frequently for the preparation of which of the following?
 - a) Primary amines
- b) Primary alcohols
- c) Tertiary amines
- d) Tertiary alcohols

266. What is 'Z'in the following reaction?

- a) Benzoic acid
- b) Cyanobenzoic acid
- c) Benzamide
- d) Aniline

The alkene formed as a major product in the above elimination reaction is

- b) $CH_2 = CH_2$

- 268. Nitroalkane is acidic only towards:
 - a) Na₂CO₃
- c) Alcohol
- d) Liquid NH₃
- 269. Nitrobenzene is reduced by Zn and alcoholic potash mixture to get
 - a) $C_6H_5 NH_2$

b) $C_6H_5 - NH - NH - C_6H_5$

c) $C_6H_5 - N - N - C_6H_5$

- d) $C_6H_5 NH CO C_6H_5$
- 270. CH₃NH₂ + CHCI₃ + KOH →nitrogen containing compound +KCI + H₂O. Nitrogen containing compound is

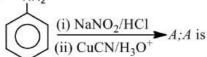
a)
$$CH_3 - C \equiv N$$

b)
$$CH_3 - NH - CH_3$$

c)
$$CH_3 - N = C$$
 d) $CH_3 N = C$

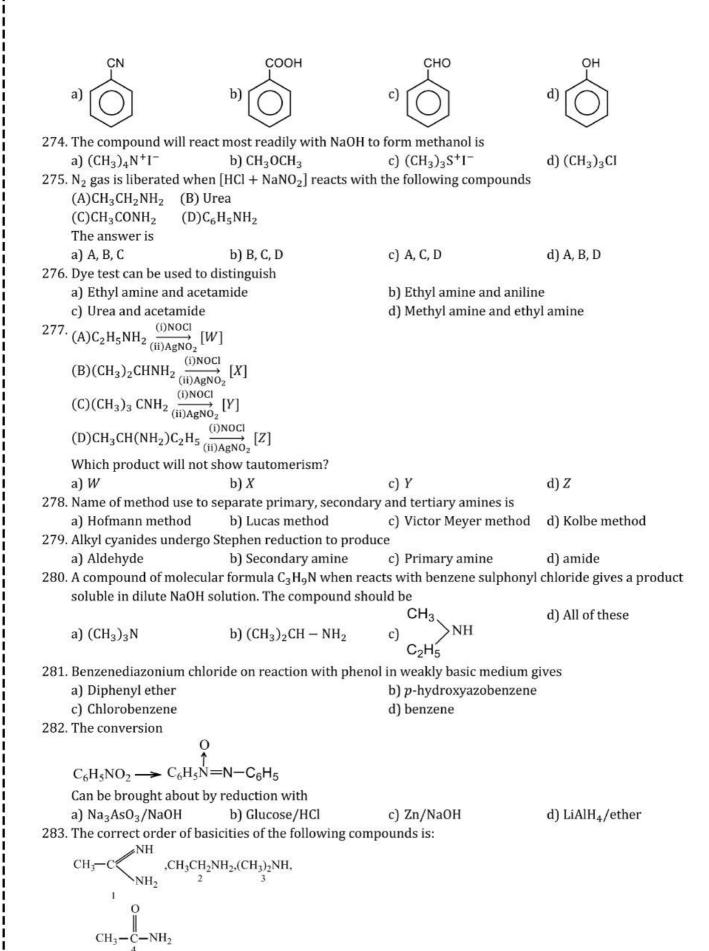
271.
$$Y \stackrel{\text{Reduction}}{=} [R_2 C = NH] \stackrel{\text{H}_3 O^+}{=} X$$

In the above sequence of reaction X, Y, Z are respectively


a) Aldehyde, ketone, NH3

b) Ketone, 1° amine, KMnO₄

c) Ketone, 2° amine, KMnO₄

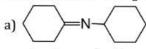

- d) Ketimine, 1° amine, H2SO5
- 272. Aniline is weaker base than ethylamine because:
 - a) Lone pair of electrons of N-atom is not freely available for coordination with a proton due to resonance than in ethylamine
 - b) Its b. p. is higher than that of ethylamine
 - c) It does not produce sufficient concentration of OH⁻ ions in solution
 - d) It is insoluble in water while ethylamine is soluble in water

273.

b) 1 > 3 > 2 > 4

284. Aniline on oxidation with Na₂Cr₂O₇ and H₂SO₄ gives

c) 3 > 1 > 2 > 4


d) 1 > 2 > 3 > 4

a) 2 > 1 > 3 > 4

- a) Benzoic acid
- b) m-amino benzoic acid c) Schiff's base
- d) p-bezoquinone

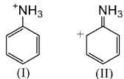
- 285. Which among the following has the highest boiling point?
 - a) CH₃CH₂CH₂NH₂
- CH₃CH₂-NH CH₃
- CH₃ CH₃ CH₃ CH₃
- d) CH₃NH₂

286. Which of the following is an enamine?

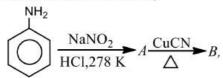
- b) N
- c) NH₂
- $^{d)}$ N=C=N-
- 287. When aniline is heated with glacial acetic acid in presence of anhydrous ZnCl₂, the product is:
 - a) Acetamide
- b) Acetanilide
- c) Phenyl acetamide
- d) Chlorobenzene

- 288. Acetonitriles on hydrolysis produce which of the following?
 - a) Amine
- b) Acid
- c) Amides
- d) Carbonyl compounds
- 289. The number of π -bonds in the formula given below, NC—CH=CH—CN are:
 - a) 5

b) 4


c) 3

d) 2


290. Hydrazobenzene $\xrightarrow{\text{NaIO}_3}$ $(X) \xrightarrow{\text{CH}_3\text{CO}_3\text{H}} (Y)$

Both X and Y on reduction with Sn/HCl giveZ. Which of the following does not represent X, Y or Z?

- a) Azobenzene
- b) Phenol
- c) Aniline
- d) Azoxybenzene
- 291. Examine the following two structures for the anilinium ion and choose the correct statement from the ones given below

- a) II is not acceptable as canonical structure because carbonium ions are less stable than ammonium ions
- b) II is not an acceptable canonical structure because it is non-aromatic
- c) II is not an acceptable canonical structure because in it N has 10 valence electrons
- d) II is an acceptable as canonical structure
- 292. In the chemical reactions,

Compounds A and B respectively are

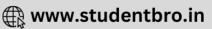
a) Fluorobenzene and phenol

- b) Benzene diazonium chloride and benzonitrile
- c) Nitrobenzene and chlorobenzene
- d) Phenol and bromobenzene

293. In the chemical reaction,

 $CH_3CH_2NH_2 + CHCI_3 + 3KOH \rightarrow (A) + (B) + 3H_2O$

The compounds (A) and (B) are respectively


a) CH₃CH₂CONH₂ and 3KCI

b) C₂H₅NC and K₂CO₃

c) C₂H₅NC and 3KCI

- d) C₂H₅CN and 3KCI
- 294. The product obtained in the reduction

d) The compound is not reduced

295. In the reaction between CH₃NC and HgO, the product obtained is

a) Methyl isothiocyanate

b) Methyl isocyanate

c) Methyl amine

d) Methyl cyanide

296. The compound which on reaction with cold HNO₂ gives only nitrosoamine is:

a) CH2NH-

b) (CH₃)₂NH

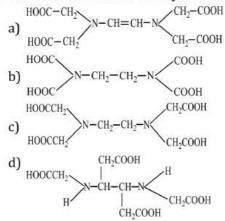
c) (CH₃)₃N

d) $(C_2H_5)_3N$

297. Which of the following is involved in Sandmeyer's reaction?

- a) Ferrous salt
- b) Diazonium salt
- c) Ammonium salt
- d) Cupraammonium salt

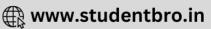
298. During diazotization of benzenamine with sodium nitrite and hydrochloric acid, the excess of hydrochloric acid is used primarily to


a) Check the hydrolysis of ϕ – OH

b) Ensure a stoichiometric amount of nitrous acid

c) Check the concentration of free aniline

d) Neutralize any base formed during reaction

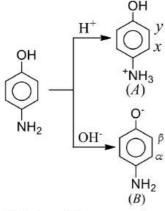

299. The correct structure of ethylenediamine-tetra acetic acid (EDTA) is:

300. Hofmann's hypobromite reaction affords a method of:

a) Preparing a tertiary amine

- b) Preparing a mixture of amines
- c) Stepping down a series
- d) Stepping up a series
- 301. Identify X in the sequence,

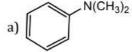
$$X \xrightarrow{\text{HNO}_2} \text{C}_3\text{H}_8\text{O} \xrightarrow{\text{H}_2\text{SO}_4} \text{C}_3\text{H}_6\text{O}_2$$
:

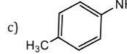

- a) CH₃-NH-CH₂-CH₃
- b) CH₃—CH₂—CH₂—NH₂
- c) $(CH_3)_3N$
- d) None of the above
- 302. Reduction of alkyl nitriles, produces
 - a) Secondary amine
- b) Primary amine
- c) Tertiary amine
- d) amide

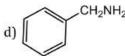
- 303. General formula of an amine is:
 - a) $C_nH_{2n+1}N$
- b) $C_n H_{2n+2} N$
- c) $C_n H_{2n+3} N$
- d) $C_n H_{2n} N$

- 304. Biuret test is not given by:
 - a) Proteins
- b) Carbohydrates
- c) Polypeptides
- d) Urea

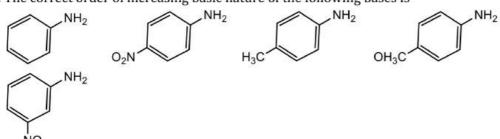
- 305. Which of the following is not a nitro derivative?
 - a) C₆H₅NO₂
- b) CH₃CH₂ONO

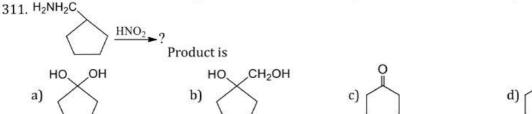

306. Consider p-aminophenol


Which positions are activated for coupling reaction in acidic and basic media respectively?


- a) x in A and β in B
- b) x in A and α in B
- c) $y \text{ in } A \text{ and } \alpha \text{ in } B$
- d) y in A and β in B

- 307. Diethyl carbonate on heating with ammonia gives:
 - a) C₂H₅NH₂
 - b) $(C_2H_5)_3N$
 - c) $(C_2H_5)_2NH$
 - d) Urea
- 308. A primary amine hated with CS₂ in presence of excess of HgCl₂ gives isothiocyanate. The reaction is called:
 - a) Hofmann's bromamide reaction
 - b) Hofmann's mustard oil reaction
 - c) Perkin's condensation
 - d) Hofmann's elimination
- 309. Amongst the compound given, the one that would form a brilliant coloured dye on treatment with NaNO2 in dil. HCI followed by addition to an alkaline solution of β -naphthol is





310. The correct order of increasing basic nature of the following bases is

a) II < V < I < III < IVb) V < II < I < III < IVc) II < V < I < IV < IIId) V < II < I < IV < III

312.
$$Me$$

$$Me$$

$$n-Bu Et$$

The alkane formed as a major product in the given elimination reaction is:

a) Me b)
$$CH_2=CH_2$$
 c) Me d) Me

- 313. In the above sequence Y is
 - b) Secondary amine c) Primary amine d) 2-nitropropane a) Tertiary amine

c) Urea

d) Anils

d) None of these

- 314. In the following reaction, X is $\xrightarrow{C_2H_5OH}$ Tribromo benzene
- b) Salicyclic acid a) Benzoic acid c) Phenol d) Aniline 315. Ketones and 1° amines react to form:
- a) Amides b) Oximes
- 316. Gabriels phthalimide reaction is used to prepare: d) All of these
- a) p -amine b) s – amine c) t – amine
- 317. Carcinogens are the products of the reaction between:
- b) $R_3N + HNO_2$ c) $RNH_2 + HNO_2$ a) R_2 NH + HNO₂ 318. Mendius method of preparation of amines consists of:
 - a) Catalytic reduction of alkyl cyanides
 - b) Reduction of amide with LiAlH₄
 - c) Reduction of nitroparaffin with Sn + HCl
 - d) Reduction of oximes with Na + C2H5OH
- 319. Which one of the following compounds will dissolve in an alkali solution after it has undergone reaction with Hinsberg reagent?
- a) CH₃NH₂ c) $(C_2H_5)_2NH$ d) C₆H₅NHC₆H₅ b) $(CH_3)_3N$
- 320. When aniline is treated with sodium nitrite and hydrochloric acid at 0°C, it gives
- a) Phenol and N2 b) Diazonium salt

c) Hydrazo compound d) No reaction takes place 321. Ethyl amine on acetylation gives c) Methyl acetamide a) N-ethyl acetamide b) Acetamide d) None of these 322. Primary amine (RNH₂) reacts with nitrous acid to give a) $RNH_3^+NO_2$ b) ROH d) None of these c) ROR 323. On heating urea, a gas evolves along with formation of biuret. Identify the gas. a) CO b) NH₃ c) CO2 d) H_2 324. The reaction of chloroform with alcoholic KOH and p-toluidine from -NH. CHCI₂ c) H₃C-325. Acetanilide is prepared by the reaction of acetyl chloride on: a) Acetamide b) Aniline c) Acetaldehyde d) Benzene 326. The correct order of the increasing basic nature of methyl amine, ammonia and aniline is: a) Methylamine < aniline < ammonia b) Aniline < ammonia < methylamine c) Aniline < methylamine < ammonia d) Ammonia < aniline < methylamine 327. Aliphatic amines are basic than NH3 but aromatic amines are basic than NH3. a) More, less b) Less, more c) Both (a) and (b) d) None of these 328. $CH_3CH_2Br \xrightarrow{aq.KOH} A \xrightarrow{KMnO_4/H^+} B \xrightarrow{NH_3} C \xrightarrow{Br_2} D$, 'D' is c) CH₃NH₂ d) CHBr₃ 329. Which of the following compounds will form alcohol on treatment with NaNO2, HCI/H2O at O°C? a) (CH₃)₂CHNH₂ b) C₆H₅NH₂ c) CH₃-330. In the reaction, $RNH_2 \xrightarrow{HNO_2} A + B + C \uparrow; C$ is d) CO_2 331. What is decreasing order of basicity of p-, s-, t-ethyl amines and NH₃? a) $NH_3 > C_2H_5NH_2 > (C_2H_5)_2NH > (C_2H_5)_3N$ b) $(C_2H_5)_3N > (C_2H_5)_2NH > C_2H_5NH_2 > NH_3$ (C_2H_5)₂NH > $C_2H_5NH_2$ > NH₃ > $(C_2H_5)_3N/'$ d) $(C_2H_5)_2NH > (C_2H_5)_3N > C_2H_5NH_2 > NH_3$ 332. Which of the following cannot be used for following conversion? $CH_3CN \rightarrow CH_3CH_2NH_2$ c) Na/C₂H₅OH d) SnCl2/HCl a) Pt/H₂ b) LiAlH₄ 333. Aqueous solution of urea is: a) Acidic b) Alkaline c) Almost neutral d) Amphoteric 334. The reaction, $CH_3CN + 4H \xrightarrow{Na/C_2H_5OH} CH_3CH_2NH_2$ is called: a) Hofmann's bromamide reaction b) Mendius reaction c) Sabatier reaction d) None of the above

335. Which substance when boiled with NaOH will evolve NH₃?

- a) Ethylamine
- b) Aniline
- c) Acetamide
- d) Acetoxime

336. Which of the following compounds is expected to be most basic?

- a) Aniline
- b) Ethylamine
- c) Hydroxylamine
- d) Methylamine

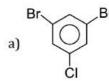
337. In pyridine, the state of hybridization of the nitrogen atom is

a) sp^2

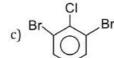
b) sp^3

c) sp

d) None of these


338. Acetoneoxime on catalytic hydrogenation gives:

- a) 1-propanamine
- b) Isopropylamine
- c) Ethyl methyl amine
- d) CH4 and ethanamine

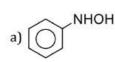

339. The final product (III) obtained in the reaction sequence

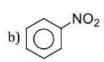
Br
$$\rightarrow$$
 Br \rightarrow 1. HONO \rightarrow 1 \rightarrow 11 \rightarrow 11

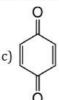
is

b) Br B

d) None of these


340. The main product in the reaction,


HCONHR
$$\xrightarrow{\text{POCl}_3}$$
 is:


- a) RCN
- b) RNC
- c) RCNO
- d) RNCO

341. Ethyl isocyanide on hydrolysis in acidic medium generates

- a) Ethylamine salt and methanoic acid
- b) Propanoic acid and ammonium salt
- c) Ethanoic acid and ammonium salt
- d) Methylamine salt and ethanoic acid
- 342. The oxidation of aniline with per acetic acid in the presence of acetic acid by refluxing gives

d) None of these

343. The compound having the molecular formula C₃H₉N represent:

- a) Trimethylamine
- b) n-propylamine
- c) Isopropylamine
- d) All of these

344. Amines have:

- a) Garlic odour
- b) Fishy odour
- c) jasmine odour
- d) Bitter almonds odour

345. Which of the following compounds gives a secondary amine on reduction?

- a) Nitromethane
- b) Nitrobenzene
- c) Methyl isocyanide
- d) Methyl cyanide

346. Indicate the correct statement.

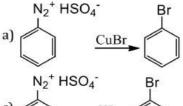
- a) C2H5N+H3OH- is acidic
- b) C2H5NH2 is less basic than NH3
- c) C₂H₅NH₂ is a stronger base than NH₃
- d) C2H5NH2 forms salts with bases
- 347. Choose the incorrect statement.
 - a) Primary amines show intermolecular hydrogen bonds.
 - b) Tert-butylamine is primary amine.
 - c) Tertiary amines do not show intermolecular hydrogen bonds.
 - d) Isopropylamine is a secondary amine.
- 348. Toluene is nitrated and the resulting product is reduced with tin and hydrochloric acid. The product so obtained is diazotised and then heated with cuprous bromide. The reaction mixture so formed contains.

- a) Mixture of o-and p-bromotoluenes
- b) Mixture of o-and p-dibromobenzenes
- c) Mixture of o-and p-bromoanilines
- d) Mixture of o-and m-bromotoluenes
- 349. The strongest base among the following is
 - a) $C_6H_5NH_2$
- b) $(C_6H_5)_2NH$

- d) $(C_2H_5)_2NH$
- 350. Aniline when diazotized in cold and then treated with dimethyl aniline gives a coloured product. Its structure would be

b)
$$CH_3$$
 $N=N$ NH_2

c)
$$N(CH_3)_2N$$


d)
$$(CH_3)_2N$$
 $N=N$ NH_2

- 351. Treatment of nitrobenzene with acetyl chloride in the presence of anhydrous AlCl₃ gives
 - a) 2-nitroacetophenone

b) 3-nitroacetophenone

c) 4-nitroacetophenone

- d) None of these
- 352. Urea when heated slowly, product formed is:
 - a) N_2
 - b) CO2
 - c) biuret
 - d) Ammonium carbamate
- 353. Which of the following reactions is an example of Sandmeyer reaction?

c)
$$\stackrel{N_2^+ \text{HSO}_4^-}{\longrightarrow}$$
 $\stackrel{\text{Br}}{\longrightarrow}$

$$\frac{N_2^+ HSO_4^-}{NaNO_2/Cu} \longrightarrow \frac{NO_2}{NO_2}$$

354. Given the following sequence of reactions,

$$\operatorname{CH_3CH_2I} \xrightarrow{\operatorname{NaCN}} A \xrightarrow[\operatorname{Partial}\\ \operatorname{hydrolysis}]{\operatorname{OH^-}} B \xrightarrow{\operatorname{Br_2/NaOH}} C$$

The major product C' is

c)
$$\mathrm{CH_3}.\mathrm{CH_2} - \mathrm{COONH_4}$$

CH3. CH2C - NBr2

- 355. CHCI₃ and KOH on heating with a compound from a bad smelling product, compound is
 - a) C₂H₅CN
- b) C2H5NC
- c) C₂H₅OH
- d) C₂H₅NH₂

- 356. Benzamide can be converted into benzonitrile with
 - a) H_30^+
- b) OH-/H₂O
- c) KCN
- d) P_2O_5

- 357. Compare boiling point of isomeric alkyl amines.
 - a) $1^{\circ} > 2^{\circ} > 3^{\circ}$
- b) $1^{\circ} > 2^{\circ} < 3^{\circ}$
- c) $1^{\circ} < 2^{\circ} < 3^{\circ}$
- d) $1^{\circ} < 2^{\circ} > 3^{\circ}$

- 358. Hofmann's bromamide reaction is to convert
 - a) Acid to alcohol
- b) Alcohol to acid
- c) Amide to amine
- d) Amine to amide
- 359. During coupling reaction of benzene diazonium chloride and aniline, the pH of reaction medium should be approximately
 - a) 1-2
- b) 9-10
- c) 4-5
- d) 7 8

The product A is

b)
$$NO_2$$

361. The reaction of chloroform with alcoholic KOH and p-toluidine form

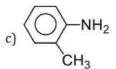
d)
$$H_3C$$
 \longrightarrow NC

362.

Pyrolysis of Me + CD₃ would give

- a) Mixture of $CH_2 = CH CD_3$ and $CH_3 CH = CD_2$ b) $CH_3 CH = CD_2$
- c) $Me_2N^+ = C(CD_3)(CH_3)$

d) $CH_2 = CH - CD_3$


363. Which of the following compounds is soluble in benzene but almost insoluble in water?

- a) C2H5OH
- b) CH₃CO₂H
- c) CH₃CHO
- d) $C_6H_5NO_2$

364. The action of nitrous acid on a primary amine gives:

- a) Nitroalkane
- b) Alkyl nitrite
- c) Alcohol
- d) Secondary amine

365. Which of the following is the strongest base?

$$d$$
) \bigcirc $-CH_2-NH_2$

366. Which is not the property of ethanenitrile (CH₃CN)?

- a) Undergoes acidic hydrolysis to give carboxylic acid
- b) Undergoes alkaline hydrolysis to give salt of carboxylic acid
- c) It tautomerises to give methyl isocyanide
- d) It gives carbylamines reaction with chloroform

367. The basic character of methylamines in vapour phase is:

- a) 3°>2°>1°>NH₃
- b) $2^{\circ}>3^{\circ}>1^{\circ}>NH_3$
- c) $1^{\circ}>2^{\circ}>3^{\circ}>NH_3$
- d) None of these

368. In which case formation of butane nitrile is possible?

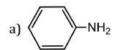
- a) $C_3H_7Br + KCN$
- b) $C_4H_9Br + KCN$
- c) $C_3H_7OH + KCN$
- d) $C_4H_9OH + KCN$

369. Isopropyl amine with excess of acetyl chloride will give

$$(CH_3)_2CH - N - COCH_3$$

a)
$$(CH_3CO)_2N - CH - (CH_3)_2$$

$$CH_3CH_2CH_2 - N - COCH_3$$


370. In the reaction of (S) 2-phenylpropamide with NaBr/H₂O to give 1-phenylethylamine

- a) There is retention of configuration
- b) There is inversion of configuration
- c) A mixture of two products is obtained
- d) There is no reaction

371. High basicity of Me₂NH relative to Me₃N is attributed to

- a) Effect f solvent
- b) Inductive effect of Me c) Shape of Me₂NH
- d) Shape of Me₃N

372. Which of the following is the strongest base?

373. In the reaction sequence

$$\frac{\text{NH}_2}{\text{NaNO}_2\text{HCl}} A \xrightarrow{\text{CuCN}} B \xrightarrow{\text{LiAlH}_4} C$$

The product 'C' is

- a) Benzonitrile
- b) Benzaldehyde
- c) Benzoic acid
- d) Benzyl amine

374. Which one does not liberate NH₃ when undergoes hydrolysis?

- a) Acetanilide
- b) Acetonitrile
- c) Acetamide
- d) Phenyl isocyanide

375. Identify the major product of the reaction

376. Primary nitroalkanes on hydrolysis give:

- a) $RCOOH + NH_2OH$
- b) RCOOH
- c) NH₂OH
- d) RCOR

377. In the reaction

$$CH_3CN + 2H \xrightarrow{HCI}_{SnCI_2} X \xrightarrow{Boiling H_2O} Y$$

The term Y is,

- a) Acetone
- b) Ethanamine
- c) Acetaldehyde
- d) Dimethyl amine

378. Which one of the following compounds forms a quaternary salt on reacting with excess methyl iodide?

- a) C₂H₅OCH₃
- b) (CH₃)₂CHOC₂H₅
- c) C₆H₅NH₂
- d) $C_6H_5NO_2$

AMINES

: ANSWER KEY:															
1)	c	2)	b	3)	b	4)	a	161)	b	162)	b	163)	a	164)	1000
5)	b	6)	C	7)	b	8)	d	165)	C	166)	c	167)	d	168)	9
9)	d	10)	b	11)	d	12)	a	169)	b	170)	d	171)	c	172)	
13)	b	14)	a	15)	C	16)	b	173)	a	174)	a	175)	c	176)	
17)	b	18)	b	19)	b	20)	d	177)	a	178)	d	179)	b	180)	
21)	C	22)	c	23)	b	24)	c	181)	d	182)	d	183)	c	184)	
25)	c	26)	c	27)	C	28)	d	185)	C	186)	c	187)	c	188)	
29)	d	30)	a	31)	b	32)	d	189)	a	190)	b	191)	C	192)	
33)	b	34)	c	35)	d	36)	c	193)	C	194)	d	195)	c	196)	
37)	b	38)	a	39)	c	40)	a	197)	a	198)	a	199)	a	200)	
41)	d	42)	b	43)	c	44)	d	201)	d	202)	c	203)	c	204)	
45)	b	46)	a	47)	b	48)	b	205)	d	206)	a	207)	c	208)	
49)	d	50)	a	51)	b	52)	b	209)	d	210)	a	211)	c	212)	
53)	d	54)	d	55)	C	56)	a	213)	a	214)	d	215)	d	216)	
57)	b	58)	b	59)	b	60)	b	217)	C	218)	b	219)	a	220)	
61)	b	62)	a	63)	b	64)	a	221)	a	222)	d	223)	a	224)	
65)	b	66)	d	67)	c	68)	a	225)	d	226)	C	227)	c	228)	
69)	a	70)	d	71)	a	72)	c	229)	b	230)	c	231)	c	232)	
73)	c	74)	a	75)	a	76)	d	233)	a	234)	a	235)	c	236)	
77)	b	78)	a	79)	c	80)	a	237)	b	238)	C	239)	a	240)	
81)	c	82)	c	83)	c	84)	c	241)	c	242)	c	243)	c	244)	
85)	b	86)	d	87)	b	88)	d	245)	d	246)	b	247)	b	248)	
89)	С	90)	b	91)	a	92)	d	249)	a	250)	a	251)	С	252)	
93)	c	94)	С	95)	a	96)	d	253)	b	254)	d	255)	b	256)	
97)	b	98)	d	99)	b	100)		257)	c	258)	c	259)	c	260)	
101)	b	102)	С	103)	C	104)	d	261)	b	262)	b	263)	b	264)	
105)	a	106)	a	107)	b	108)	a	265)	a	266)	d	267)	b	268)	
109)	С	110)	b	111)	c	112)	2000	269)	b	270)	b	271)	b	272)	
113)	С	114)	d	115)	c	116)	d	273)	b	274)	a	275)	a	276)	
117)	c	118)	b	119)	d	120)	- 1	277)	c	278)	a	279)	a	280)	
121)	b	122)	C	123)	d	124)		281)	a	282)	a	283)	b	284)	
125)	а	126)	С	127)	a	128)		285)	a	286)	a	287)	b	288)	
129)	d	130)	b	131)	d	132)	10000	289)	a	290)	b	291)	С	292)	
133)	a	134)	C	135)	c	136)		293)	c	294)	b	295)	b	296)	
137)	c	138)	a	139)	d	140)		297)	b	298)	c	299)	c	300)	
141)	a	142)	c	143)	c	144)	- 1	301)	b	302)	b	303)	c	304)	
145)	b	146)	b	147)	d	148)		305)	b	306)	b	307)	d	308)	
149)	d	150)	b	151)	b	152)	200	309)	c	310)	a	311)	d	312)	
153)	С	154)	a	155)	c	156)		313)	c	314)	d	315)	d	316)	
157)	b	158)	c	159)	b	160)		317)	a	318)	a	319)	a	320)	

321)	a	322)	b	323)	b	324)	d	353)	a	354)	a	355)	b	356)	d
325)	b	326)	b	327)	a	328)	c	357)	a	358)	c	359)	C	360)	c
329)	a	330)	b	331)	d	332)	d	361)	d	362)	a	363)	d	364)	c
333)	c	334)	b	335)	C	336)	b	365)	d	366)	d	367)	a	368)	a
337)	a	338)	b	339)	b	340)	b	369)	C	370)	a	371)	a	372)	d
341)	a	342)	b	343)	d	344)	b	373)	d	374)	d	375)	b	376)	a
345)	C	346)	c	347)	d	348)	a	377)	C	378)	c				
349)	d	350)	c	351)	C	352)	c	1000							

: HINTS AND SOLUTIONS :

1 (c)
$$CH_3CN \xrightarrow{\text{Reduction}} CH_3CH_2NH_2$$

amine on reduction.

acetonitrile ethanamine

3 **(b)**Carbylamine (or isocyanides) give secondary

 $R - N \stackrel{\supseteq}{=} C \stackrel{\text{Ni/H}_2}{\longrightarrow} R - \text{NH} - \text{CH}_3$ carbylamine secondary amine

4 (a)
For detection of secondary amines Liebermann's nitroso test is used.

5 (b) Tertiary amines, due to lack of H-atom, attached directly with N, does not react with benzene sulphonyl chloride (C₆H₅SO₂CI), i.e., Hinsberg's reagent. (C₂H₅)₃N is a tertiary amine, so does not react with C₆H₅SO₂CI.

7 **(b)**

$$\phi N_{2}^{+} + \phi OH \rightarrow \phi N_{2} \phi OH$$
or \begin{align*} \to N = N \to \to OH \\
\text{coupling product}

10 **(b)**—CN and —NC are different functional groups.

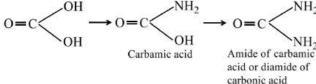
11 (d)

$$\begin{array}{c} \text{CH}_{3}\text{CN} \xrightarrow[\text{-}]{\text{H.OH}} \\ \underset{+2\text{H}_{2}\text{O}}{\longrightarrow} \\ -\text{NH}_{3} \end{array} \xrightarrow[\text{-}]{\text{CH}_{3}\text{COOH}} \xrightarrow{\begin{array}{c} \text{Decarboxylation} \\ \text{Sodalime} \\ -\text{CO}_{2} \end{array}} \text{CH}_{4}$$

Ethane ethanoic acid methane

Nitrile (A)

12 (a) $C_2H_5OH + NH_3 \rightarrow C_2H_5NH_2 + H_2O$


Aliphatic amines (in which amino group is attached with alkyl group) are more basic than aromatic amines (in which amino group is bonded directly with benzene nucleus). Hence, C₆H₅CH₂NH₂ (benzyl amine), being an aliphatic amine, is the most basic among the given the compounds.

14 (a) $R - C \equiv N + 4[H] \xrightarrow{\text{LiAIH}_4} RCH_2NH_2$

15 (c) Electron deficient group decreases the electron density of N-atom, thus, makes its lone pair less available for donation

The order for acidic nature depends upon the ease to lose H⁺ ion. —COOH is resonance stabilized and thus lose H⁺ at the earliest. Also NH₃⁺ near to —COOH releases H⁺ more easily due to electron withdrawing nature of —COOH than NH₃⁺ far away from —COOH.

17 **(b)**Urea is monoamide of carbamic acid or diamide of carbonic acid,

18 **(b)**

Aniline is not obtained as a major product by the reaction.

$$C_6H_5NO_2 + Zn powder \xrightarrow{Alcoholic KOH} IH$$

Nitrobenezene

C₆H₅NO₂+Zn powder Alcoholic KOH nitrobenezene [H]

$$\left\langle \bigcirc \right\rangle$$
 N=N- $\left\langle \bigcirc \right\rangle$ azobenzene

19 (b)

$$\mathsf{CH_3} - \mathsf{C} \equiv \mathsf{N} \xrightarrow{\overset{\mathbf{Reduction}}{\longrightarrow}} \mathsf{CH_3} \mathsf{CH_2} \mathsf{NH_2}$$

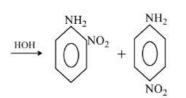
$$\xrightarrow{\overset{\mathbf{HONO}}{\longrightarrow}} \mathsf{CH_3} \mathsf{CH_2} \mathsf{OH}$$

methyl cyanide ethanamine ethanol
1. (B)

$$\begin{array}{c} \operatorname{CH_3CH_2NH_2} \xrightarrow{\operatorname{CHCI_3,KOH}} \operatorname{CH_3CH_2N} \rightrightarrows \operatorname{C} \\ 2. & \text{Ethyl isocyanide} \end{array}$$

(C)

21 (c)


 $CH_3 - NH_2 + 3CH_3I \rightarrow (CH_3)_4N^+I^$ methyl amine quaternary

ammonium salt

therefore, 3 moles of ${\rm CH_3I}$ (methyl iodide) are required for reaction with methyl amine.

23 **(b)**

$$\begin{array}{c|c}
 & \text{NHCOCH}_3 \\
\hline
 & & \\
\hline$$

(-NHCOCH₃ is o- and p-directing)

24 (c)

$$C_2H_5NH_2 \xrightarrow{HNO_2} C_2H_5OH \xrightarrow{PCI_3} C_2H_5CI \xrightarrow{NH_3} C_2H_5NH_2$$

ethyl amine ethanol ethyl chloride ethyl amine

3.

(B)

(C)

27 (c)

Reaction of aniline with benzaldehyde is condensation reaction.

H
$$C_6H_5 - C = O + H_2NC_6H_5 \xrightarrow{Condensation} C_6H_5CH$$

$$= NC_6H_5 + H_2O$$
Reproductive a willing the production of the condition of the con

Benzaldehyde aniline benzylidene aniline

28 (d)

$$C_6H_5CH_2NH_2 + CHCI_3 + 3KOH$$

 $\rightarrow C_6H_5CH_2NC + 3KCI + 2H_2O$

29 (d

Secondary amides such as N-methylethanamide on reduction with LiAIH $_4$ give secondary amines. $\text{CH}_3\text{CONHCH}_3 + [\text{H}] \xrightarrow{\text{LiAIH}_4} \text{CH}_3\text{CH}_2\text{NHCH}_3 + \text{H}_2\text{O}$ N-methylethanamide 2°amine

30 (a)

Hofmann bromamide reaction is used to prepare 1° amine form primary amides. In this method, amides are treated with bromine in presence of KOH.

$$R - CONH_2 + 4KOH + Br_2 \xrightarrow{\Delta} RNH_2 + K_2CO_3 + 2KBr + 2H_2O$$

32 (d)

Compounds having active hydrogen such as, phenols, alcohols, primary or secondary amines and amides show Schotten-Baumann reaction. But tertiary amines do not have active hydrogen, hence, do not undergo Schotten-Baumann reaction.

$$R-OH+$$
 $+$
 $NaOH$
 $-H_2O$
 $-NaCl$

33 **(b)**

Due to +ve IE in alkylamines and resonance in $C_6H_5NH_2$.

34 **(c)**

Schmidt reaction

$$0\\ ||\\ R-C-OH \xrightarrow[H_2SO_4]{NaN_3} R-NH_2+N_2+CO_2$$

37 **(b)**

Benzene diazonium chloride reacts with phenol in weakly basic medium gives *p*-hydroxy azobenzene.

40 (a) $RCONH_2 \xrightarrow{P_2O_5} RCN + H_2O$

41 (d)

Basicity of amines depends upon the availability of lone pair of electrons of nitrogen for donation. Electron releasing group increases the electron density over nitrogen, thus increases the basic character. 3° methyl amine although contains three electron realeasing groups but is least basic because of steric hindrance. Hence, the order of basic character is

$$(CH_3)_2NH > CH_3NH_2 > (CH_3)_3N$$

Methyl cyanide gives acetic acid on hydrolysis.

$$CH_3CN \xrightarrow{H_2O/H^+} CH_3 - C - NH_2 \xrightarrow{H_2O/H^+} CH_3COOH + NH_3$$

$$R$$
— O — N = O $\stackrel{4[H]}{\longrightarrow} R$ — $OH + NH2OH$

C₃H₉N represent following structures

CH3CH2CH2NH2

Propanamine

(1°amine)

H

 $CH_3CH_2 - N - CH_3$

N-methyl ethanamine

(2°amine)

$$CH_3$$
 | $CH_3 - N - CH_3$ N,N-dimethyl methanamine (3°amine)

H-atom of C_6H_6 ring is replaced by S_E reactions

46 (a)

Presence of-OCH3 gp. on aniline makes it more basic than the presence of - NO2, -Cl or — CH₃ gp.

48 **(b)**

Electron withdrawing groups (e.g., benzyl) because the basicity of amines. Electron donating groups (e.g., alkyl) increase the acidity of amines. : The correct order of basicity of amines is $C_2H_5NH_2 > CH_3NH_2 > NH_3 > C_6H_5NH_2$

49 CH₃NH₃Cl is acidic in nature.

50

$$CH_3CH=NOH \xrightarrow{P_2O_5} CH_3CN + H_2O$$

51

Dimethyl oxalate is used for distinguishing primary, secondary and tertiary amines (Hofmann's method).

The primary (1°) amine forms the corresponding substituted oxamide which is usually a crystalline solid.

$$COOC_2H_5$$
 $H - NHR$ $CONHR$
 $| + \rightarrow | +2C_2H_5OH$
 $COOC_2H_5$ $H - NHR$ $CONHR$

5. The secondary amine forms a diethyl oxamic ester which is generally a liquid.

$$COOC_2H_5$$
 $CONR_2$
 $| +NHR_2 \rightarrow | +C_2H_5OH$
 $COOC_2H_5$ $COOC_2H_5$

6. The tertiary amine under these conditions does not react at all since it does not contain a replaceable hydrogen atom.

52 **(b)**

Nitro group goes always to meta position, in aromatic compounds, irrespective to the substituents.

53 (d)

It is carbylamine reaction,
$$\begin{array}{c} \text{CH}_2\text{NH}_2\\ \text{CHCl}_3\\ \text{KOH}, \\ \text{C}_2\text{H}_5\text{OH} & \text{benzyl}\\ \text{isocyanide} \end{array}$$

54 (d)

Secondary amines give oily nitrosoamine with nitrous acid

$$(CH_3CH_2)_2NH + HNO_2$$

$$\rightarrow$$
 (CH₃CH₂)₂N - NO + H₂O

Secondary amine nitrous acid oily nitrosoamine

55 (c)

Nitrosoamine on heating with conc. $\rm H_2SO_4$ gives secondary amine. This reaction is called Liebermann nitroso reaction.

$$R_2$$
N - N = O + H_2 O $\xrightarrow{\text{Conc.}H_2\text{SO}_4}$ R_2 NH + H NO₂ nitrosoamine secondary amine

56 (a)

Cyanides are hydrolysed either by alkali or acid to give carboxylic acid.

$$R - CN + 2H_2O \xrightarrow{\text{NaOH}} R - COOH + NH_3$$

57 **(b)**

(A)
$$RCN \xrightarrow{\text{Reduction}} RCH_2NH_2$$
1°amine

$$RCN + CH_3MgBr \longrightarrow R-C=N-MgBr \xrightarrow{H. OH} CH_3$$
 CH_3
 CH_3
 CH_3
 CH_3

$$C=0 + NH_3$$

methyl ketone

(B)

(C) $RNC \xrightarrow{Hydrolysis} H - COOH + RNH_2$ 1°amine

(D)
$$RNH_2 \xrightarrow{HNO_2} ROH + N_2 + H_2O$$

59 **(b**)

 $CHCI_3 + C_6H_5NH_2 + 3NaOH$

$$\rightarrow$$
 C₆H₅NC + 3NaCI + 3H₂O

phenylisocyanide

62 **(a)**

It is the first step of Gabriel's phthalimide synthesis. The hydrogen bonded to nitrogen is sufficiently acidic due to two α -carbonyls.

$$N \longrightarrow H + OH^{-} \longrightarrow H_{2}O + OH$$

The conjugate base forms above act as nucleophile in the subsequent step of reaction. As shown above, the nucleophile exist in three resonating form, one may think of oxygen being the donor atom in the nucleophilic attack. However, nitrogen act as donor as it is better donor than oxygen.

$$S_{N^2}$$
 S_{N^2}
 S_{N^2}

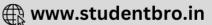
Bromine is not substituted in the above reaction as it is in resonance with benzene ring giving partial double bo0nd character to C-Br bond, hence difficult to break.

$$H_2CCI$$
 H_2CCI H_2CCI

63 (b)

Only these aromatic primary amines undergo diazotisation in which $-\mathrm{NH}_2$ is attached to nucleus.

64 (a)


Molecular formula of benzonitrile is C₆H₅CN.

phenyl cyanide or benzonitrile

65 **(b)**

In carbylamines reaction, when a primary amine reacts with chloroform in presence of alc. KOH, it

gives iso-cyanide which has abonxious odour. This reaction is given by primary amine

$$RNH_2 + CHCl_3 + 3KOH \xrightarrow{\Delta} RNC + 3KCl + 3H_2O$$

Primary (alc) alkyl
Amine iso-cyanide

67 **(c)**

$$NH_2CONH_2 + NH_2 \cdot NH_2 \rightarrow NH_2CONHNH_2 + NH_3$$

68 (a)

$$R-C \equiv N \xrightarrow{\substack{\text{hydrolysis} \\ \text{Alkyl cyanide}}} R - \text{CONH}_2 \xrightarrow{\substack{\text{hydrolysis} \\ \text{hydrolysis}}} R \text{COOH}$$
Alkyl cyanide alkyl amide carboxylic acid

69 (a)

Secondary nitroalkanes can be converted into ketones by using aqueous HCI.

$$2 \xrightarrow{R} CHNO_2 + HC1 \longrightarrow 2 \xrightarrow{R} C = O + N_2O + H_2O$$

70 (d)

Benzyl amine is most basic because positive inductive effect (+1) increases due to presence of methylene group.

72 (c)

$${\rm C_2H_5NH_2} \mathop{\longrightarrow}\limits^{\rm [O]} {\rm CH_3CH} {=} {\rm NH} \mathop{\longrightarrow}\limits^{\rm HOH} {\rm CH_3CHO} + {\rm NH_3}$$

73 (c)

Carbylamine reaction is given by only primary amines (both aliphatic and aromatic). In this reation a primary amine reacts with chloroform in basic medium, to form a very bad smelling compound, called carbylamines

 $\mathrm{C_6H_5NH_2} + \mathrm{CHCl_3KOH} \rightarrow \mathrm{C_6H_5NC} + \mathrm{KCl} + \mathrm{H_2O}$

75 (a

$$NH_2CONH_2 + HOC_2H_5 \xrightarrow{\Delta} H_2NCOOC_2H_5 + NH_3$$
Urethane

77 **(b**)

Only primary amines give positive carbylamine test

78 (a)

Primary amines have tendency of forming H-bonds

81 (c)

$$CH_3 - C_2 - CH_3$$

$$sp^3 \quad sp^2 \quad sp^2$$

Ш

$$CH_3 - C_2 - OH$$

 $sp^3 - sp^2$

(c)

$$CH_3 - C - \equiv N$$

$$sp^3 \quad sp$$

(d) 0

Acetonitrile does not contain sp^2 hybridised carbon.

85 (b)

Due to

+ ve IE in alkyamines and resonance in C₆H₅NH₂.

86 (d)

Benzene sulphyonyl N-alkyl benzene soluble in KOH

chloride sulphonamide

87 **(b)**

$$C_6H_5NH_2 \xrightarrow{Diazotisation} C_6H_5N_2Cl + H_2O$$

89 (c)

Tertiary amines do not have replaceable H-atom.

90 (b

Urea gives biuret test. Biuret formed gives violet colour with CuSO₄ in alkaline medium.

91 (a)

The order of basicity among the following amines is

$$(CH_3)_2NH > (CH_3)_3N > CH_3NH_2 > C_6H_5NH_2$$

92 (d)

Concentration does not affect the basis strength of amines

93 (c)

Secondary amine on reaction with aq. $\rm HNO_2$ at low temperature produces yellow oily nitrosoamines. $\rm CH_3CH_2NHCH_2CH_3$ is secondary amine.

95 (a

Ethyl isocyanide on hydrolysis in acidic medium gives methanoic acid and ethyl amline salt

$$C_2H_5NC + H_2O \xrightarrow{H+} HCOOH + C_2H_5NH_2$$
methanoic acid

 $C_2H_5NH_2 + H^+ \rightarrow C_2H_5NH_3^+$ Ethylamine

96 (d)

$$R$$
—N=C=O $\xrightarrow{\text{HOH}} R$ NH₂ + H₂CO₃

Biuret formed gives violet colour with CuSO₄ in alkaline medium.

98 (d)

Benzyl amine $(C_6H_5CH_2NH_2)$ is more basic than aniline $(C_6H_5NH_2)$ because N-atom of aniline is delocalized over the benzene ring. However in benzyl amine the lone pair of electrons on the Natom is not conjugated with the benzene ring and therefore it is not delocalized. Hence, the lone pair of electrons on the N-atom in benzyl amine is more readily available for protonation than that on the N-atom of aniline. Thus, the benzyl amine is a stronger base than aniline.

99 (b)

> Basicity of amines increases with increasing +I effect of alkyl group.3°amine has greater +I effect than 2° and 1° amines but less basic than these, due to steric hindrance of bulky groups. Moreover, benzyl amine is a weaker base than

> aliphatic amines. Hence, the following compounds has the order of basicity.

$$\begin{array}{cccc} {\rm CH_3NH_2(1^\circ),(CH_3)_2NH(2^\circ),(CH_3)_3N(3^\circ),C_6H_5CH} \\ {\rm II} & {\rm III} & {\rm IV} \\ {\rm II} > {\rm I} > {\rm V} \end{array}$$

100 (d)

It is methyl amine which, being basic dissolves in dilute HCI. It with NaNO2 evolves nitrogen gas leaving behind methyl alcohol which has smell of wood-spirit.

CH₃NH₂
$$\xrightarrow{\text{HCI}}$$
 CH₃NH₂. HCI

CH₃NH₂ + HNO₂ $\xrightarrow{\text{NaNO}_2/\text{HCI}}$ CH₃OH + N₂ \uparrow +H₂O

methyl alcohol

101 (b)

2° amines are more basic than 1° amines due to +ve IE of — CH₃ gp. In amide the resonance give rise to less availability to electron pair for coordination 119 (d) and thus less basic. The negative

102 (c) Availability of lone pair on N-atom (Lewis concept),

 $RNH_2 + H_2O \rightarrow RNH_3^+ + OH^-$ (Bronsted concept proton acceptor).

103 (c)

$$C_2H_5NH_2 + Na \rightarrow C_2H_5NHNa + \frac{1}{2}H_2$$

$$CH_3CN \xrightarrow{HOH} CH_3COOH$$

$$C_3H_9N(A) \xrightarrow{HNO_2} Alcohol + N_2$$

 $\Rightarrow A \text{ is } 1^\circ \text{ amine, } i. e$

$$C_3H_9N \xrightarrow{KOH+CHCl_3} Carbylamine \xrightarrow{Reduction}$$

$$CH_3$$
 $CH-NH-CH_3 \Rightarrow Alkyl part is CH_3 $CH-Hence$, $CH_3$$

$$C_3H_9N$$
 is CH_3 $CH-NH_2$

109 (c)

Reduction of nitrobenzene by Zn and NH₄CI gives N-phenyl hydroxylamine.

$$+4[H]$$
 $2n/NH_4Cl$ $+H_2O$

N-phenyl hydroxylamine

Carbylamine reaction is used to prepare isocyanides.

112 (a)

$$RNH_2 + C_6H_5SO_2CI \rightarrow C_6H_5SO_2NHR$$
(Sulphonamide soluble in alkali)

114 (d)

All primary (aliphatic) amines give alcohol with H which forms

117 (c)

Roulle first isolated urea (in 1773) from urine and named it as urea.

$$\xrightarrow{\text{H}_2\text{NOH}} \text{CH}_3\text{CH} = \text{NOH} \xrightarrow{\text{Reduction}} \text{CH}_3\text{CH}_2\text{NH}_2 \xrightarrow[-\text{H}_2\text{O}]{\text{NOCI}} \text{CH}_3\text{CH}_2$$

Acetaldehyde ethyl amine ethyl chloride (A) (B) (C)

120 (a)

$$R - C \equiv N$$

: Alkyl group is attached to carbon.

122 (c)

p-amine forms alcohol; s-amine forms only nitrosoamine.

123 (d)

Nitrene is not the intermediate of Gabriel's phthalimide reaction

124 **(b)**

$$NH_2CONH_2 + HNO_3 \rightarrow NH_2CONH_2 \cdot HNO_3$$

126 (c)

$$C_6H_5CH = O + H_2NCH_3 \rightarrow C_6H_5CH = NCH_3$$

128 (b)

Ethyl bromide reacts with KCN to give ethyl cyanide.

 $C_2H_5Br + KCN(alc.) \rightarrow C_2H_5CN + KBr$ Ethyl bromide ethyl cyanide

130 (b)

$$C_6H_5NO_2 \xrightarrow{Sn/HCl} C_6H_5NH_2$$

Nitrobenzene Aniline

Nitrobenzene in reduction with Sn and HCI produce aniline. Hence, 'X' is identified as – NH_2 group.

131 (d)

$$CH_3I + NH_3 \rightarrow CH_3NH_2 \xrightarrow{CH_3I} (CH_3)_2NH$$

 $\xrightarrow{CH_3I} (CH_3)_3N \xrightarrow{CH_3I} (CH_3)_4N^+I^-$

137 (c)

$$C_2H_5NH_2 \xrightarrow{HNO_2} C_2H_5OH + N_2 \uparrow + H_2O$$

138 (a

Primary amines on heating with chloroform and ethanolic KOH, give alkyl isocyanide. This reaction is called carbylamine reaction.

$$R - NH_2 + CHCI_3 + 3KOH \xrightarrow{\Delta} R - NC + 3KCI + 3H_2O$$

1°amine alcohol alkyl isocyanide

139 (d)

$$CH_3CONH_2 + NaOH \rightarrow CH_3COONa + NH_3$$
(A)

 $(C_2H_5)_2CO_3 + 2NH_3 \rightarrow NH_2CONH_2 + 2C_2H_5OH$ ethyl carbonate urea

 $\mathrm{NH_2COOC_2H_5} + \mathrm{NH_3} \rightarrow \mathrm{NH_2CONH_2} + 2\mathrm{C_2H_5OH}$

Ethyl urethane urea

 $COCl_2 + 2NH_3 \rightarrow NH_2CONH_2 + 2HCl_3$

phosgene urea

140 (c)

Tertiary amine can be directly oxidised to corresponding nitro compound by KMnO₄.

141 (a)

$$R - NH_2 + CHCl_3 + 3KOH \rightarrow 3KCl + 3H_2O$$

+ RNC
offensive

142 (c)

$$2RNH_2 + 2HCl$$

143 (c)

$$H$$

$$|$$

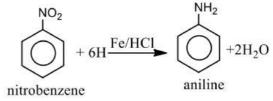
$$C_2H_5NH_2 + O = C - C_6H_5 \rightarrow C_2H_5N$$

$$= HCC_6H_5 + H_2O$$
Benzaldehyde

(A)

$$NH_2CO(NH_2 + H:NH\cdot NH_2 \longrightarrow NH_2CONHNH_2 + NH_3$$

urea hydrazine
(B)


$$C_2H_5NH_2 + NOCl \rightarrow C_2H_5Cl + H_2O + N_2$$
(C)

144 (b)

$$R$$
— $NO_2 \xrightarrow{Sn/HCl} R$ — NH_2

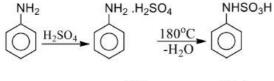
145 (b)

Aniline is prepared by the reduction of nitrobenzene in acidic medium.

146 (b)

- NH and - C - gp. are o-and p-directing (activating) and m-directing gps.(deactivating)

respectively. In such case o-(minor) and p-isomers (major) predominates.


147 (d)

Electron donors are bases. In the given choices structure which does not involve resonance will have electron easily available for donation, hence most basic.

- $\dot{\cdot}\cdot$ Only in choice (b) electrons are not in conjugation with double bond of adjacent atom.
- ∴ Compound in choice (b) is most basic.

148 (d)

Sulphanilic acid exists as a dipolar ion which has acidic and basic groups in the same molecule. Such ions are called Zwitter ions or inner salts

$$\begin{aligned} \text{C}_2\text{H}_5\text{NH}_2 + \text{CHCI}_3 + 3\text{KOH} \\ &\rightarrow \text{C}_6\text{H}_5\text{NC} + 3\text{KCI} + 3\text{H}_2\text{O} \end{aligned}$$

Aniline chloroform phenyl isocyanide Thus in this reaction phenyl isocyanide is produced. This is called carbylamine reaction.

152 (b)

$$RCN \xrightarrow{\text{Hydrolysis}} RCOOH + \text{NH}_3$$

$$RCH = \text{NOH} \xrightarrow{\text{Reduction}} RCH_2\text{NH}_2 + \text{H}_2\text{O}$$

$$RCN + 2H_2O \xrightarrow{\Delta} R\text{NH}_2 + \text{HCOOH}$$

$$RCONH_2 \xrightarrow{\text{Hydrolysis}} RCOOH + \text{NH}_3$$

154 (a)

Hinsberg reagent $\mathrm{C_6H_5CO_2Cl}$ reacts with primary amines and gives alkali soluble benzene sulphonamide; with secondary amine it gives alkali insoluble benzene sulphonamide , with tertiary amines it does not react.

$$C_6H_5SO_2Cl + RNH_2 \rightarrow RNHSO_2C_6H_5 \xrightarrow{KOH} RNKSO_2C_6H_5$$

156 (a)

Due to sp^3 -hybridisation and lone pair of electron (like NH₃)

157 (b)

$$\begin{array}{c} C_6H_5NO_2 \xrightarrow{Sn/HCI} C_6H_5NH_2 \\ \xrightarrow{C_6H_5COCI} C_6H_5CONHC_6H_5 \end{array}$$

Nitrobenzene aniline benzanilide

160 (a)

Carbylamine reaction is given by aliphatic and aromatic primary amine hence, it can be used for the distinguish of primary amine with secondary and tertiary amine. In this reaction, a primary amine reacts with chloroform and alcoholic KOH to give poisonous substance isocyanide.

$$RNH_2 + CHCI_3 + 3KOH(alc.) \xrightarrow{\Delta} RNC + 3KCI + 3H_2O$$

Primary amine

alkyl isocyanide

161 (b)

Ethyl amine reacts with nitrous acid to give ethyl alcohol and nitrogen.

$$C_2H_5NH_2 + HNO_2 \rightarrow C_2H_5OH + N_2 + H_2O$$

162 (b)

Aniline reacts with Br₂to give 2, 4, 6-tribromoaniline not bromoaniline as

$$+3Br_2$$
 Br
 $+3HBr$

163 (a)

Trimethyl amine is a tertiary amine. It dissolve in cold nitrous acid to form salts which decompose on warming to nitrosoamine and alcohol. It will not liberate nitrogen.

2.4.6-tribromoaniline

$$(CH_3)_3N + HNO_2 \rightarrow [(CH_3)_3NH]^+NO_2^-$$

trimethyl ammonium nitrite

167 (d)

Reduction of NO₂ group to NH₂group is taking place by Fe/HCI.

172 (b)

Benzaldehyde condenses with N, N-diamethyl aniline in presence of anhydrous ${\rm ZnCl_2}$ to give malachite green

$$\begin{array}{c} \text{H-} & \text{CH}_3 \\ \text{C}_6\text{H}_3\text{CH=O} + \\ \text{H-} & \text{CH}_3 \\ \text{CH}_3 & \text{CH}_3 \\ \text{CH}_3 & \text{-H}_2\text{O} \end{array}$$

$$\begin{array}{c} \text{Anhy.} \\ \text{ZnCl}_2 \\ \text{-H}_2\text{O} \\ \text{CH}_3 & \text{-H}_2\text{O} \\ \text{CH}_3 & \text{CH}_3 \\ \text{CH}_3 & \text{CH}_3 \\ \text{malachite green} \end{array}$$

174 (a)
$$R - X + \text{NaCN} \to R - \text{CN} + \text{Na} X$$

Alkyl halide aliphatic cyanide

175 (c)

$$R_2 NH \xrightarrow{[0]} R_2 N - NR_2$$

176 (d)

Tertiary amines react as,

$$(CH_3)_3N + HNO_2 \rightarrow (CH_3)_3NHNO_2$$

178 (d)

HNO₂ reacts to give an alcohol means the compound is primary amine.

 $C_5H_{13}N$ means $C_5H_{11}NH_2$ (primary amine) Optically active alcohol means C_5H_{11} segment

contain a chiral carbon.

$$\begin{array}{cccc} & & & H \\ 5 & 4 & 3 & 2 \mid \\ \text{CH}_3 - \text{CH}_2 - \text{CH}_2 - \text{C} - \text{NH}_2 \\ & & \mid \\ & & 1 \text{ CH}_3 \end{array}$$

Pentan-2-amine

179 (b)

 $CH_3CH_2 - O - N = O$ is a nitrite derivative, hence it is not a nitro derivative.

180 (d)

or C6H5SO2CI is called Hinsberg

reagent.

It is used for the distinction of 1° , 2° , 3° amine.

181 (d)

Presence of electron withdrawing group like -CN, -CHO, $-\text{NO}_2$ etc decreases the electron density over N- atom of amines, and thus decreases their basic character as lone pair is less available for donation

184 (d)

It is not used in purification of water.

185 (c)

In tertiary amines, no H-atom is attached directly to the more electronegative N-atom. Hence, it has no tendency to form H-bond

186 (c)

Methylaminomethane is trivial name of Nmethyl methanamine (CH_3)₂NH.

187 (c)

Both gives alkane (RH) with Grignard reagents RMgX due to the presence of acidic hydrogen (N—H)

190 (b)

Hofmann's method is used to separate primary, secondary and tertiary amines. The compound used is diethyl oxalate for this purpose.

191 (c)

The reaction is believed to follow the mechanism.

$$R$$
— $CONH_2 + OBr^- \rightarrow RCONHBr + OH^-$
 $RCONHBr + OH^- \rightarrow RCONBr + H_2O$

$$RCONBI \rightarrow R-C=O+Br$$
 $R-C=O \rightarrow R-\ddot{N}=C=O$

$$R-N=C=O+2OH^- \longrightarrow RNH_2 + CO_3^2$$

192 (a)

Primary nitro alkanes when treated with nitrous acid from nitrolic acid which when dissolve in alkali gives, salt of nitrolic acid which is red in colour. In excess of acid, the salt dissociated, thus colour disappears while in excess of alkali the red colour reappears

194 (d)

(a)
$$C_6H_5CONH_2 \xrightarrow{\text{LiAlH}_4} C_6H_5CH_2NH_2$$

Benzylamine

(b)
$$C_6H_5CH_2CONH_2 \xrightarrow{Br_2/KOH} C_6H_5CH_2NH_2$$

Benzylamine

(c)
$$C_6H_5CN \xrightarrow{\text{LiAlH}_4} C_6H_5CH_2NH_2$$
Benzylamine

(d)
$$C_6H_5CH_2NC \xrightarrow{\text{LiAIH}_4} C_6H_5CH_2NHCH_3$$

2°amine

195 (c)

$$NH_4CNO \xrightarrow{\Delta} NH_2CONH_2 \xrightarrow{\Delta} NH_2CONHCONH_2$$
Urea
Biure

196 (d)

The amines are basic in nature due to presence of lone pair of electron on nitrogen. The 2°amines are basic among 1°, 2° and 3°amines because of steric effect and hydration effect

197 (a)


$$CH_2N_2 + CH_3COOH \rightarrow CH_3COOCH_3 + N_2$$

198 (a)

Follow text.

200 (b)

Only 1° aromatic amine (primary aromatic amine) from diazonium salts at low temperature (0° - 5°C). A reaction in which - NH2 group is converted into diazo group $(-N^+ \equiv N)$ is called diazotization. Diazotized salts are stable in cold aqueous solution.

$$C_6H_5NH_2+HCI \xrightarrow{0^{\circ}-5^{\circ}C} C_6H_5NH2CI^ C_6H_5NH_2+HCI \xrightarrow{0^{\circ}-5^{\circ}C} HNO_2 +NaCI$$
 $C_6H_5NCI^- +HNO_2 \xrightarrow{0^{\circ}-5^{\circ}C} C_6H_5N_2CI^- + 2H_2O$
 $C_6H_5NH_2, C_6H_4, C_6H_4$

Amines, so undergo diazotization but C₆H₅CH₂NH₂ (aliphatic amine) will not undergo

202 (c)

Nitration of aniline also gives *m*-nitro aniline in strong acidic medium because in strong acidic condition protonation of - NH2 group gives anilinum ion (+NH3) which is deactivating in nature and of m-directive nature

203 (c)

$$RCONH_2 + NaOBr$$

 $\rightarrow RNH_2 + NaBr + Na_2CO_3$
 $+ 2H_2O$
'X'

204 (b)

Action of alcoholic caustic potash on chloroform and aniline forms a bad smelling compound phenyl isocyanide.

$$\begin{array}{c} C_6H_5NH_2+CHCI_3+3KOH(alc.)\\ \hspace{0.5cm} \to C_6H_5NC+3KCI+3H_2O\\ aniline \hspace{0.5cm} chloroform \hspace{0.5cm} phenyl\\ isocyanide \end{array}$$

This reaction is called carbylamine reaction and it 218 (b) is actually the test of primary amines.

206 (a)

-NO₂ is a meta directing group. As it is also a deactivating group, so no chance of introduction of second - Br atom.

207 (c) R—NC+2HgO $\rightarrow R$ NCO+Hg₂O

210 (a) Isocyanides (carbylamines) are foul odour compounds.

As foul odour

213 (a) This is carbylamine reaction.

214 (d)

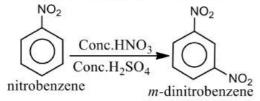
When aqueous solution of benzene diazonium chloride boiled, it gives phenol.

215 (d)

Electron withdrawing groups result in decreased basicity while electron releasing groups increases the basicity. Thus, the order of basic character is D > A > B > C

217 (c)

Nitrobenzene on reduction with lithium aluminium hydride (LiAIH₄) gives azobenzene.


$$\begin{array}{c|c}
 & NO_2 \\
\hline
 & LiAlH_4 \\
\hline
 & nitrobenzene
\end{array}$$
nitrobenzene
$$\begin{array}{c|c}
 & azobenzene
\end{array}$$

Secondary and tertiary amines fail to undergo the carbylamine test because they react with alcoholic кон.

219 (a)

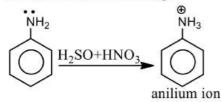
Nitrobenzene on nitration gives m-dinitro benzene as - NO2 group is meta-directing.

In this reaction the attacking reagent is NO₂⁺.

220 (d)

Bases react with acid to form salt.

- : Amines are basic in nature.
- :It forms salt on reaction with H2SO4 $2RNH_2 + H_2SO_4 \rightarrow [RNH_3]_2^+SO_4^{2-}$


$$C_2H_5NH_2 + NOCl \rightarrow C_2H_5Cl + N_2 + H_2O$$

$$C_6H_5NH_2 + CI - COCH_3 \xrightarrow{NaOH} C_6H_5NHCOCH_3 + HCI$$

acetyl chloride aniline acetanilide

223 (a)

On direct nitration of aniline, lone pair of electrons present at nitrogen atom will accept proton from the nitrating mixture to give anilium ion which is meta directing.

224 (d)

Anilinium hydrogen chloride (C₆H₅NH₂. HCI) gives white precipitate. With AgNO₃ solution as it gives CI⁻ ion, p-chloro aniline has CI atom attached directly to the nucleus, hence cannot be ionised.

226 (c)

The basic character of amines depends upon the capacity nitrogen atom to donate an electron pair. 233 (a) More the ability of nitrogen atom to donate electron pair, more will be the basic character. In presence of electron releasing groups (+I showing group, $-CH_3$) the basic character of amines increases due to more availability of electrons on nitrogen atom.

Tertiary amines are least basic due to steric hindrance caused by three bulky alkyl groups. .. The order of basic character is $NH(CH_3)_2 > CH_3NH_2 > N(CH_3)_3 > NH_3$

227 (c)

Aliphatic and aromatic primary amines on warming with CHCI3 and alcoholic KOH form isocyanide or carbylamine which has very unpleasant smell. This reaction is known as carbylamine reaction.

Since p-toluidine contains an aromatic primary amine group, it undergoes similar reaction and give 4-methyl phenyl isocyanide.

229 (b)

$$R-N$$
 is nitroalkane having $-N$ of f. gp.

R—0— N=0 is alkylnitrite having —0—N=0 f. gp.; f. gps are different.

231 (c)

Primary amines react with alc alkali and chloroform to give an offensive odour compound i.e., isocyanide. This reaction is called carbylamine

$${\rm CH_3CH_2CH_2NH_2+CHCI_3+3KOH} \rightarrow {\rm CH_3CH_2CH_2NC+3KCI+3H_2O}$$
 $n\text{-propyl amine} \qquad (alco.) \quad {\rm propyl}$ isocyanide

232 (a)

Intermolecular H-bonding is more in primary amines than in secondary amines as there are two H-atom available for H-bonding. Tertiary amines do not have intermolecular H-bonding due to absence of H-atom available for H-bonding. Therefore, the order of boiling points of the given amines is as fallows

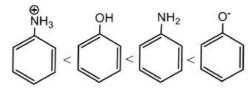
$$\text{nC}_4\text{H}_9\text{NH}_2 > (\text{C}_2\text{H}_5)_2\text{NH} > \text{C}_2\text{H}_5\text{N}(\text{CH}_3)_2
 b.p. 350.8 K b.p. 329.3 K b.p. 310.5 K$$

Aniline or any 1° amine reacts with aldehyde to form Schiff's base or anils.

$$NH_2$$

$$+ CH_3CHO - H_2O$$

$$+ CH_3CHO - Schiff's base or anil$$


234 (a)

CLICK HERE

Coupling of diazonium salts takes place in the following order as

235 (c)

Quaternary ammonium compounds, e.g., $[R_4N]^+X^-$, tetra alkyl amm. halide or $[R_4N]^+OH^-$, tetra alkyl amm. Hydroxide.

237 (b)

$$\begin{array}{c} C_2H_5NH_2 \\ \xrightarrow{HNO_2} C_2H_5OH \xrightarrow{PCl_5} C_2H_5Cl \xrightarrow{NH_3} C_2H_5NH_2 \\ \text{Ethyl amine} & \text{ethyl alcohol} & \text{ethyl chloride} \\ \text{ethyl amine} & (A) & (B) \end{array}$$

238 (c)

K2CO3 is formed in Hofmann's degradation reaction

Aniline undergoes diazotisation.

The conversion of —CN to —CH₂NH₂ by catalytic reduction is called Mendius reaction.

$$RBr + KCN \longrightarrow RCN \xrightarrow{Reduction} RCH_2NH_2$$

245 (d)

Aniline reacts with bromine and give white ppt. of 2, 4, 6 tribromoaniline.

$$+3 \text{ Br}_2$$
 $+3 \text{ HB}_2$
 $+3 \text{ HB}_2$
 $+3 \text{ White ppt.}$

246 (b)

Nitromethane forms methyl hydroxylamine on reduction in netural medium with Zn/NH4CI.

$$\text{CH}_{3}\text{NO}_{2} + 4 \text{[H]} \xrightarrow{\text{Zn/NH}_{4}\text{CI}} \text{CH}_{3}\text{NHOH} + \text{H}_{2}\text{O}$$

Nitromethane

N-methyl hydroxyl

amine

251 (c)

In Hofmann elimination reaction, less substitudes alkene is the main product

$$\begin{bmatrix} \mathsf{CH}_3 \\ \mathsf{CH}_3 \mathsf{CH}_2 \mathsf{CH}_2 - {}^{\mathsf{t}} \mathsf{N} - \mathsf{CH}_2 \mathsf{CH}_3 \\ \mathsf{CH}_3 \end{bmatrix} \mathsf{OH}^{-} \xrightarrow{\Delta} \\ \mathsf{CH}_3 \mathsf{CH}_2 \mathsf{CH}_2 - \mathsf{N} (\mathsf{CH}_3)_2 + \mathsf{CH}_3 \mathsf{CH} = \mathsf{CH}_2 + \mathsf{CH}_2 = \mathsf{CH}_2 \\ (minor) & major \\ \\ major \\ (minor) & major \\ \end{bmatrix}$$

253 (b)

$$R - NH_2 \xrightarrow{HNO_2} R - OH$$

C₆H₅COCl has no reaction with carboxylic acids.

257 (c)

Basic nature of an amine depends upon availability of lone pair on nitrogen atom. If lone pair is easily available the compound would be more basic.

Dut to +I effect of methyl group, methyl amine is more basic than ammonia and dimethyl amine is more basic than methyl amine. While aniline is a weaker base than ammonia due to delocalization of lone pair of nitrogen atom at different position.

258 (c)

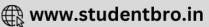
Presence of methyl group increase the electron density on nitrogen. So, increases the basicity. Aniline is weaker base than the primary aliphatic amines and this may be explained by resonance. The lone pair of N is involved in resonance, thus not available for donation. That's why basic strength of aryl amines (aniline) is lowest.

260 (c)

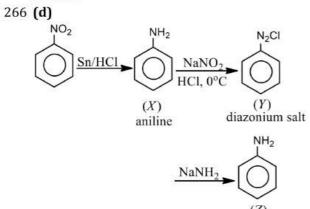
In aqueous solution, basicity order dimethyl amine > methyl amine > trimethyl amine > aniline

261 (b)

The name of isocyanides is carbylamine, and when it is attached with an alkyl group, the compound is called alkyl carbylamine, i.e.,RNC.


264 (b)

This is thorpe nitrile condensation involving only α-H-atom of nitrile due to strong attraction nature of CN gp.


265 (a)

Grabriel's synthesis: Phthalimide is reacted with KOH to form potassium phthalimide. The potassium salt is treated with an alkyl halide. The product N-alkyl phthalimide is put to hydrolyse

with hydrochloric acid, then primary amine is formed.

 $\therefore Z$ is aniline

267 (b)

$$\begin{array}{c}
 & OH_4 \\
 & HB^4 \\
 & OH_2 - CH_3 \\
 & B^3 \\
 & B^2
\end{array}$$

There are four β - hydrogens, in this quaternary ammonium salt.

On heating quaternary ammonium salt gives Hofmann elimination (abstraction of most acidic hydrogen which is β^1).

Hence, major product is $CH_2 = CH_2$. (Least substituted alkene).

268 (b)

$$C_2H_5NO_2 \xrightarrow{NaOH} CH_3COONa + NH_2OH$$

269 (b)

Nitrobenzene is reduced by Zn and alcoholic KOH into hydrazobenzene.

$$2C_6H_5NO_2 + 10H \xrightarrow{Zn+alc.KOH} C_6H_5 - NH - NH - C_6H_5 + H_2O$$
hvdrazobenzene

270 **(b)**

$$CH_3NH_2 + CHCI_3 + 3KOH$$

 $\rightarrow CH_3NC + 3KCI + 3H_2O$

 CH_3NC or $CH_3 - N^+ \equiv C^-$ methyl isocyanide or methyl carbylamine.

This reaction is an example of carbylamine reaction and it is used for the distinction of *p*-amines from *s*- and *t*-amines or identification of *p*-amino group.

274 (a)

$$(CH_3)_4N^+I^- + NaOH \rightarrow (CH_3)_4N^+OH^- + NaI$$

$$(CH_3)_4N^+OH^- \xrightarrow{\Delta} (CH_3)_3N + CH_3OH$$

methanol

275 (a)

$$CH_3CH_2NH_2 \xrightarrow{NaNO_2+HCl} CH_3 CH_2 OH + N_2 + H_2O$$
+ NaCl

Ethylamine

$$NH_2CONH_2 \xrightarrow{NaNO_2+HCl} 2N_2 + H_2O + CO_2 + NaCl$$

Urea

$$CH_3CONH_2 \xrightarrow{NaNO_2 + HCI} CH_3 COOH + N_2 + H_2O$$

Acetamide

$$C_6H_5NH_2 \xrightarrow{NaNO_2+HCl} C_6H_5N_2^+Cl^-H_2O + NaCl$$

Aniline

276 (b)

aniline

$$C_2H_5NH_2 + HNO_2 \rightarrow C_2H_5OH + N_2 + H_2O$$

ethyl amine ethyl alcohol
(1°aliphatic amine)

+ HNO₂
$$\frac{0^{\circ}\text{C}}{\text{phenol}}$$

aniline

1° aromatic amine

∴Dye test is used to distinguish between

1°aliphatic and

1° aromatic amine

277 (c)

Presence of α -H atom is the main condition for exhibiting tautomerism.

The reactant taken in reaction (C) does not contain any α -H atom, thus the product (Y)will also show the absence of α -H atom, Hence, Y will show tautomerism

278 (a)

8. In Hofmann method, a mixture of primary, secondary and tertiary amines is treated with diethyloxalate, when primary amine forms solid oxamide, secondary amine forms a liquid oxamic ester whereas tertiary amine remains unaffected.

$$(COOC_2H_5)_2 + 2HNHR \rightarrow (CONHR)_2 + 2C_2H_5OH$$

Diethyl oxalate 1° amine solid

CONR₂

$$(COOC_2H_5)_2 + HNR_2 \rightarrow |$$

$$COOC_2H_5 + C_2H_5OH$$

2°amine liquid

$$(COOC_2H_5)_2 + NR_3 \rightarrow No reaction$$

3° amino

279 (a)

An alkyl cyanide is dissolved in ether or better in ethyl formate or ethyl acetate, and reduced with $SnCI_2$ and HCI and then steam distilled. The whole process is called Stephen reaction. In this process alkyl cyanide is reduced to aldehyde.

$$CH_3 - C \equiv NH = 2[H] + HCI \xrightarrow{SnCl_2 + HCI} \xrightarrow{ether}$$

There is no analogous method for the preparation of ketones.

282 (a)

Azoxybenzene is the main product when reducing agent used is Na₃AsO₃/NaOH

283 (b)

Negative charge developed on N in the resonance hybrid makes it more basic as it loses electron pair readily. Also 2° amine is more basic than 1° amine due to +ve IE of alkyl group. In amide the lone pair remains less available due to delocalisation in resonance.

284 (d)

Aniline on oxidation with Na₂Cr₂O₇and H₂SO₄ gives *p*-benzoquinone.

p-benzoquinone (quinone)

285 (a)

As the molecular mass increase, boiling point increases. In case of isometric amines, however, as the number of H-atoms attached directly to N-atom decreases, boiling point decreases because tendency to form H-bonds decreases. Hence, the order of boiling points of given amines is $\text{CH}_3\text{NH}_2 < (\text{CH}_3)_3 \text{ N} < \text{CH}_3\text{CH}_2\text{N}(\text{NH}_3) \\ < \text{CH}_3\text{CH}_2\text{CH}_2\text{NH}_2$

288 (b)

Acetonitriles on hydrolysis produce carboxylic acids with the evolution of ammonia.

$$\begin{array}{c} \text{O} & \text{O} \\ \text{||} & \text{||} \\ \text{CH}_3 - \text{C} \equiv \text{N} \xrightarrow{\text{H}_2\text{O}} \text{CH}_3 - \text{C} - \text{NH}_2 \xrightarrow{\text{H}_2\text{O}} \text{CH}_3 - \text{C} \\ - \text{OH} + \text{NH}_3 \end{array}$$

Acetonitrile acetamide

acetic acid

289 (a)

 $N \equiv C - CH = CH - C \equiv N$; It has five π -bonds.

292 (b)

Formation of A is by diazotization and formation of B from A is by S_N reaction.

293 (c)

$$CCH_3CH_2NH_2 + CHCI_3 + 3KOH$$

 $\rightarrow CH_3CH_2NC + 3KCI + 3H_2O$
9. (B)

This reaction is known as carbylamine reaction

294 **(b)**

By using $\mathrm{H}_2\mathrm{S}$, NH_3 as reagent, selective reduction takes place

296 (b)

A characteristic reaction of secondary amines. $(CH_3)_2NH \xrightarrow{HNO_2} (CH_3)_2 N-N=0$ (nitrosoamine).

299 (c)


EDTA is ethylenediamine-tetra acetic acid.

300 (c)

$$R$$
— $CONH_2 + Br_2 + KOH \rightarrow R$ — NH_2

301 **(b**

C₃H₈O is alcohol and C₃H₆O₂ is acid. Thus, C₃H₉N i

302 (b)

 $R - CN + 4[H] \xrightarrow{LiAIH_4} R - CH_2NH_2$ Alkyl nitriles primary amine

303 (c)

General formula for any amine is $C_nH_{2n+3}N$; also note that for primary amine, it is C_nH_{2n+1} NH₂; for 319 (a) secondary amine, it is $C_nH_{2n+2}NH$ and for tertiary amine, it is $C_nH_{2n+3}N$.

304 (b)

Biuret test is given by compounds having - CONH2gp.

305 (b)

 $CH_3CH_2 - O - N = O$ is a nitrite derivative, hence, it is not a nitro derivative

309 (c)

As we know, benzenediazonium salt forms brilliant coloured dye with β -naphthol, the compound under consideration must be ptoludine (c) as it is a primary aromatic amine. Primary aromatic amine, on treatment with NaNO2 in dil. HCI forms the corresponding diazonium chloride salt.

$$NH_2$$
 NH_2
 NH_2
 N_2 *CI
 N_2 *CI

310 (a)

−OCH₃ is strongest electron releasing group (+M effect) which opposes most the dispersion of lone pair of electron of nitrogen into the ring. Thus, -OCH₃ being at *para* position imparts hifhest basicity. NO2 being at meta position stabilises the electron pair of nitrogen only by -1 effect. While NO₂ being present at para position due to -M effect and -I effect stabilizes the lone pair of electron of nitrogen, most and impart least basicity.

317 (a)

+ $HNO_2 \rightarrow R_2N-N=0$ H_2O Nitrosoamines are carcinogens.

318 (a)

$$R \longrightarrow CN \xrightarrow{\text{Reduction}} RCH_2CH_2$$

$$\begin{aligned} \mathsf{CH_3NH_2} + \mathsf{C_6H_5SO_2CI} \\ &\to \mathsf{C_6H_5SO_2NHCH_3} \\ &\xrightarrow[(\mathsf{alkali})]{\mathsf{NaOH}} \mathsf{C_6H_5SO_2N(Na)CH_3} \end{aligned}$$

1° amine hinsberg's N-methyl benzene soluble sodium salt

> Reagent sulphonamide

320 (b)

It gives diazonium salt.

It is known as diazotization reaction.

321 (a)

Ethyl amine, on acetylation, gives N-ethyl

$$C_2H_5NH_2 \xrightarrow{CH_3COCI} C_2H_5NHCOCH_3$$

N-ethyl acetamide

322 (b)

1° aliphatic amines on reduction with HNO2 form alcohol and evolve N2.

$$RNH_2 + HONO \xrightarrow{NaNO_2 - HCI} ROH + N_2 + H_2$$

323 (b)

 $NH_2CONH_2 + HNHCONH_2 \rightarrow NH_2CONHCONH_2$ + NH₃

324 (d)

it is a example of carbylamines reaction


325 (b)

$$C_6H_5NH_2 + CH_3COCl \rightarrow C_6H_5NHCOCH_3$$

326 (b)

Due to +ve IE in alkylamines and resonance in $C_6H_5NH_2$.

327 (a)

Due to +ve $\it IE$ in alkylamines and resonance in $C_6H_5NH_2$.

328 (c)

$$\begin{array}{c} \operatorname{CH_3CH_2Br} \xrightarrow{\operatorname{aq.KOH}} \operatorname{CH_3CH_2OH} \xrightarrow{\operatorname{KMnO_4/H}^+} \operatorname{CH_3COOH} \\ \xrightarrow{\operatorname{NH_3}} \operatorname{CH_3COONH_4} \xrightarrow{\Delta} \operatorname{CH_3CONH_2} \end{array}$$

10.

Acetic acid

acetamide

(B)

 $\xrightarrow{\text{Br}_2/\text{alkali}} \text{CH}_3\text{NH}_2$

Methyl amine (D)

329 (a)

Aliphatic primary amines on treatment with $NaNo_2/HCI$ gives alcohols with evolution of nitrogen gas.

$$(CH_3)_2CHNH_2 + HONO \xrightarrow{NaNO_2/HCI} (CH_3)_2CHOH + N_2 + H_2O$$

330 (b)

$$RNH_2 \xrightarrow{HNO_2} ROH + H_2O + N_2 \uparrow$$

11. (B) (C)

331 (d)

The abnormal trend of 3° amines is explained in terms of steric effect. Note basic order of amines on the basis of p K_b reported in Finar

$$(CH_3)_2NH > CH_3NH_2 > (CH_3)_3N > NH_3$$

3.23 3.32 4.2

4.73

 pK_b

$$(C_2H_5)_2NH > (C_2H_5)_3N > C_2H_5NH_2 > NH_3$$

3.07 3.13 3.37

4.73

 pK_h

332 (d)

The mixture of SnCl₂ + HCl, reduces, -CN group partially

333 (c)

The aqueous solution of urea is neutral in nature but urea behaves as a weak monoacid-base and forms salts with strong acids, e.g.,

$$NH_2CONH_2 + HNO_3 \rightarrow NH_2CONH_2 \cdot HNO_3$$
Urea nitrate

334 (b)

The conversion of —CN to —CH₂NH₂ by catalytic reduction is called Mendius reaction.

335 (c)

336 (b)

Due to +ve *IE* of alkyl gp., N-atom of amines acquires partial –ve charge and thus, electron pair is easily donated.

340 (b)

$$HCONHR \xrightarrow{POCl_3} RNC \times H_2O$$

341 (a)

$$C_2H_5NC + H_2O \xrightarrow{H^+} HCOOH + C_2H_5NH_2$$

formic acid
 $C_2H_5NH_2 + H^+ \rightarrow C_2H_2NH_3^+$

342 (b)

Aniline on oxidation with per acetic acid, CH₃CO₃H gives nitrobenzene

343 (d)

 C_3H_9N may have the structures as: $(CH_3)_3N$, $CH_3CH_2CH_2NH_2$, $(CH_3)_2CHNH_2$ (c)

344 (b)

Amines possess fishy smell.

345 (c)

$$CH_3NC \xrightarrow{Reduction} CH_3NHCH_3$$

346 (c)

C₂H₅NH₂ is stronger base than NH₃. The presence of alkyl group on N-atom intensifies –ve charge on N-atom and thus, electron pair is donated more readily.

$$R \longrightarrow NH_2 \qquad H-NH_2$$
(+ve IE of alkyl gp.)

347 (d)

Isopropyl amine is a primary amine because one hydrogen atom of ammonia is replaced by isopropyl group.

$$NH_2$$

|
 $CH_3 - CH - CH_3$

1° amine

349 (d)

$$(C_2H_5)_2$$
 NH $(2^\circ$ amine) is strongest base. Basic nature of amines due to presence of lone pair of

electron on nitrogen atom which is available for the bond formation with Lewis acid. Due to the +I effect 2° amine is better base than 1° amine and NH₃. In case of aromatic amines the lone pair on nitrogen atom involved in resonance, therefore, not available for bond formation, so aromatic amines are less basic.

350 (c)

Aniline on diazotization in cold (at 0° to 5°C) gives benzene diazonium chloride.

$$NH_2 + NaNH_2 + 2 HCI \frac{0-5^{\circ}C}{Diazotization}$$
 $N=N-CI + NaCI + 2H_2O$
benzene diazonium chloride

This benzene diazonium chloride on coupling reaction with dimethyl aniline gives a coloured product *i.e.*, p(N, N dimethyl)amino azobenzene (azodye)

$$N = N.CI + H - N(CH_3)_2 - NAOH - N(CH_3)_2 - HCI$$

352 (c)

 $\text{NH}_2\text{CONH}_2 + \text{HNHCONH}_2 \xrightarrow{\Delta} \text{NH}_2\text{CONHCONH}_2$ Biuret

354 **(a)**

$$\begin{array}{c} \text{CH}_3\text{CH}_2\text{I} \xrightarrow{\text{NaCN}} \text{CH}_3\text{CH}_2\text{CN} \xrightarrow{\text{OH}^-} \text{CH}_3\text{CH}_2\text{CONH}_2 \\ \xrightarrow{\text{Br}_2/\text{NaOH}} \text{CH}_3\text{CH}_2\text{NH}_2 \end{array}$$

355 (b)

This is carbylamine reaction which is used to distinguish 1° amines from other amines. The reaction is given by 1° amines only.

$$C_2H_5NH_2 + CHCI_3 + 3KOH$$

$$\rightarrow$$
 C₂H₅N $\stackrel{=}{\rightarrow}$ C + 3KCI + 3H₂O

 $RNH_2 + CHCI_3 + 3KOH$

$$\rightarrow R - N \stackrel{=}{\rightarrow} C + 3KCI + 3H_2O$$

1°amine chloroform

isocyanide

(bad smelling)

356 (d)

With P_2O_5 benzamide loses a water molecule and gives benzonitrile.

$$\begin{array}{c|c}
 & CN \\
\hline
 & P_2O_5 \\
\hline
 & -H_2O \\
\end{array}$$
benzamide benzonitrile

Here, P2O5 is a dehydrating agent.

357 (a)

The order of boiling points of the isomeric amines is as fallows:

Primary amines > secondary amines > tertiary amines

$$(1^{\circ} > 2^{\circ} > 3^{\circ})$$

358 (c)

Hofmann's bromamide reaction is used to convert amide to amine.

$$RCONH_2 + Br + 4KOH$$

$$\rightarrow RNH_2 + K_2CO_3 + 2KBr + 2H_2O$$

amide

p-toluidine (a carbylamine reaction)

363 (d)

Nitrobenzene is insoluble in water but soluble in benzene alcohol etc.

364 (c)

R—NH $_2$ + HNO $_2$ \rightarrow ROH + N $_2$ + H $_2$ O; But note that CH $_3$ NH $_2$ gives CH $_3$ ONO or CH $_3$ OCH $_3$ on treating with HNO $_2$.

365 (d)

Benzyl amine is the strongest base among the given compounds because lone of \ddot{N} are not taking part in conjugation whereas in other compounds lone pairs are taking part in conjugation

366 (d)

Carbylamine reaction is given by aliphatic and aromatic primary amine.

CH₃CN does not give carbylamine reaction with chloroform because it is not an amine.

CH₃CN undergoes acidic hydrolysis to give carboxylic acid.

$$CH_3CN \xrightarrow{H_2O/H^+} CH_3CONH_2 \xrightarrow{H_2O/H^+} CH_3COOH$$
+ NH₃

acetic acid

CH₃CN undergoes alkaline hydrolysis to give salt of carboxylic acis.

$$CH_3CN \xrightarrow{NaOH} CH_3CONH_2 \xrightarrow{NaOH} CH_3COONa + NH_3$$

Sodium acetate

CH₃CN tautomerises to give methyl isocyanide.

367 (a)

In vapour phase the basic character of methylamines is $3^{\circ} > 2^{\circ} > 1^{\circ} > NH_3$.

This is due to less acidic character in conjugate acid of amines because of +ve IE of methyl group which disperses +ve charge on N-atom more effectively in 3° ion.

$$\begin{array}{ccc} CH_3 & H \\ \downarrow & \downarrow \\ CH_3 \longrightarrow N^+H & CH_3 \longrightarrow N^+H \\ \uparrow & \uparrow \\ CH_3 & CH_3 \end{array}$$

+ve charge on N is more dispersed and thus, more stable.

In case of solution phase steric hindrance or solvation effect play role to give the basic order $2^{\circ} > 1^{\circ} > 3^{\circ} > NH_3$.

368 (a)

When propyl bromide is reacted with KCN, butanenitrile is formed.

 $CH_3CH_2CH_2Br + KCN \rightarrow CH_3CH_2CH_2C \equiv N + KBr$ propyl bromide butane nitrile

369 (c)

$$(CH_3)_2CH. NH_2 + 2CH_3COCI \xrightarrow{-HCI} (CH_3)_2CH$$

- $N(COCH_3)_2$

(ter-amine) iso-propyl amine (pri amine)

370 (a)

Hofmann bromamide degradation takes place with complete retention of stereochemical configuration in the migrating alkyl group

371 (a)

Electrons donors are bases. Greater the stabilisation of cation formed by loss of electron more will be basicity of amine.

2° amine is more basic than 3° amine because 2° amine is stabilized by hydrogen bonding with solvent molecule.

372 (d)

 CH_3 – (an electron releasing (+I)group) increases electron density at N-atom hence, basic nature is increased.

$$\begin{array}{c|c} & I^{-} & \text{NH}_{2} \\ \hline & I^{-} & \text{NH} & \text{CH}_{3} \\ \hline & & I^{-} & \text{NH}_{2} \\ \hline & & \text{CH}_{3} \\ \hline & & & \text{CH}_{2} & \text{NH}_{2} \\ \hline \end{array}$$

C₆H₅ decreases electron density at N-atom thus basic nature is decreased. (Lone-pair on N in aniline compounds is delocalised along with π electrons in benzene).

Thus, (d) is the strongest base.

374 (d)

Isocyanide on hydrolysis forms primary amine not ammonia.

$$C_6H_5NC + H_2O \xrightarrow{H^+} C_6H_5NH_2 + HCOOH$$

375 (b)

Less substituted alkene is the main product

376 (a)

$$RCH_2NO_2 \xrightarrow{HOH} RCOOH + NH_2OH$$

377 (c)

$$\begin{aligned} &\operatorname{SnCI}_2 + 2\operatorname{HCI}(g) \to \operatorname{SnCI}_4 + 2[\operatorname{H}] \\ &\operatorname{CH}_3\operatorname{CN} + 2[\operatorname{H}] + \operatorname{HCI} \to \operatorname{CH}_3\operatorname{CH} \\ &= \operatorname{NH}.\operatorname{HCI} \xrightarrow{\operatorname{H}_2\operatorname{O}} \operatorname{CH}_3\operatorname{CHO} + \operatorname{NH}_4\operatorname{CI} \end{aligned}$$

rochloride and
$$(Y)$$
 is

(Y)


(X) is acetaldimine hydrochloride and (Y) is acetaldehyde.

378 (c)

Amines react with alkyl halide (excess) to give quaternary ammonium salt.

$$C_6H_5NH_2 + 3CH_3I \rightarrow C_6H_5N^+(CH_3)_3I^-$$

Assertion - Reasoning Type

This section contain(s) 0 questions numbered 1 to 0. Each question contains STATEMENT 1(Assertion) and STATEMENT 2(Reason). Each question has the 4 choices (a), (b), (c) and (d) out of which ONLY ONE is correct.

- a) Statement 1 is True, Statement 2 is True; Statement 2 is correct explanation for Statement 1
- b) Statement 1 is True, Statement 2 is True; Statement 2 is not correct explanation for Statement 1
- c) Statement 1 is True, Statement 2 is False
- d) Statement 1 is False, Statement 2 is True

1

- Statement 1: Hofmann degradiation and curtius degradation methods are used to prepare 1° amones
- Statement 2: Both involves intermolecular alkyl shift

2

- Statement 1: Stable diazonium salt is formed when primary amines reacts with nitrous acid
- Statement 2: Cl is the leaving group

basic medium

3

- Statement 1: In strongly acidic solutions, aniline becomes more reactive towards electrolphilic reagents
- Statement 2: The amino group being completely protonated in strongly acidic solution, the lone pair of electrons on the nitrogen is no longer available for resonance

4

- Statement 1: Tertiary amine is less basic than secondary amine in aqueous solution
- Statement 2: Over crowding due to I⁺effect of three alkyl groups increases strain

5

- Statement 1: Carbylamines reaction involves chemical reaction between 1° amine and chloroform in
- **Statement 2:** In carbylamines reaction, $-NH_2$ group changes into-NC group

: ANSWER KEY:

2) 3) 4) 1) 5)

: HINTS AND SOLUTIONS :

1 (a)

Hofmann bromamide degrdadation and Curtius degradation both involve the intramolecular alkyl shift and, thus result in the formation of 1° amines

2 (d)

When primary amines (aliphatic) react with HNO_2 , unstable diazonium salt is obtained which readily dissociate to give a carbocation, N_2 and Cl^- (the leaving group). The carbocation upon hydrolysis gives alcohol

$$CH_3CH_2NH_2 \xrightarrow{HONO} CH_3CH_2\overset{+}{N} \equiv N^- CI$$

$$\longrightarrow CH_3CH_2 \xrightarrow{\Phi} CH_3CH_2OH + H^+$$

3 (d)

Since aniline gets protonated in strongly acidic medium, the lone pair of electrons are not available to produce mesomeric or electrometric effect. Thus, aniline becomes less reactive

4 (a)

Alkyl group is +I showing group. In general, it increases the electron density over nitrogen, thus increase the availability of lone pair for donation. But in case of tertiary amines, in aqueous solution, the over crowing of three bulkier alkyl group result in increased strain, which decreases the availability of lone pairs for donation and thus result in decreased basicity. Hence, in aqueous solution, 3° amines are less basic as compared to 2° amine

5 (a)

When primary amine is treated with chloroform and alkali, a very bad smelling compound, called isocyanide or carbylamine is obtaied. On the basis of the name of the product, the reaction is called carbylamines reaction

$$\begin{array}{ccc} R - \mathrm{NH_2} + \mathrm{CHCl_3} & + \mathrm{KOH} \\ & \rightarrow R\mathrm{NC} & + \mathrm{KCl} + \mathrm{H_2O} \end{array}$$

1°amine chloroform alkali isocyanide

or carbylamine

